
Nonparametric Regression

1 Introduction

So far we have assumed that

Y = β0 + β1X1 + · · ·+ βpXp + ε.

In other words, m(x) = E[Y |X = x] = β0 + β1X1 + · · · + βpXp. Now we want to drop the
assumption of linearity. We will assume only that m(x) is a smooth function.

Given a sample (X1, Y1), . . ., (Xn, Yn), where Xi ∈ Rd and Yi ∈ R, we estimate the regression
function

m(x) = E(Y |X = x) (1)

without making parametric assumptions (such as linearity) about the regression function
m(x). Estimating m is called nonparametric regression or smoothing. We can write

Y = m(X) + ε

where E(ε) = 0. This follows since, ε = Y − m(X) and E(ε) = E(E(ε|X)) = E(m(X) −
m(X)) = 0

Example 1 Figure 1 shows data from on bone mineral density. The plots show the rela-
tive change in bone density over two consecutive visits, for men and women. The smooth
estimates of the regression functions suggest that a growth spurt occurs two years earlier for
females. In this example, Y is change in bone mineral density and X is age.

Example 2 (Multiple nonparametric regression) Figure 2 shows an analysis of some
diabetes data from Efron, Hastie, Johnstone and Tibshirani (2004). The outcome Y is a
measure of disease progression after one year. We consider four covariates (ignoring for
now, six other variables): age, bmi (body mass index), and two variables representing blood
serum measurements. A nonparametric regression model in this case takes the form

Y = m(x1, x2, x3, x4) + ε. (2)

A simpler, but less general model, is the additive model

Y = m1(x1) +m2(x2) +m3(x3) +m4(x4) + ε. (3)

Figure 2 shows the four estimated functions m̂1, m̂2, m̂3 and m̂4.
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Figure 1: Bone Mineral Density Data

2 The Bias–Variance Tradeoff

The prediction risk or prediction error is

R(m, m̂) = E((Y − m̂(X))2) (4)

where (X, Y ) denotes a new observation. It follows that

R(m, m̂) = τ 2 + E
∫

(m(x)− m̂(x))2dP (x) (5)

= τ 2 +

∫
b2n(x)dP (x) +

∫
vn(x)dP (x) (6)

where bn(x) = E(m̂(x)) −m(x) is the bias and vn(x) = Var(m̂(x)) is the variance. Recall
that τ 2 is the unavoidable error, due to the fact that there would be some prediction error
even if we knew the true regression funcion m(x).

The estimator m̂ typically involves smoothing the data in some way. The main challenge is
to determine how much smoothing to do. When the data are oversmoothed, the bias term
is large and the variance is small. When the data are undersmoothed the opposite is true.
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Figure 2: Diabetes Data

This is called the bias–variance tradeoff. Minimizing risk corresponds to balancing bias and
variance.

3 The Regressogram

We will begin by assuming there is only one covariate X. For simplicity, assume that
0 ≤ X ≤ 1. The simplest nonparametric estimator of m is the regressogram. Let k be an
integer. Divide [0, 1] into k bins:

B1 = [0, h], B2 = [h, 2h], B3 = [2h, 3h], . . . .

Let nj denote the number of observations in bin Bj. In other words ni =
∑

i I(Xi ∈ Bj)
where I(Xi ∈ Bj) = 1 if Xi ∈ Bj and I(Xi ∈ Bj) = 0 if Xi /∈ Bj.

We then define Y j to be the average of Yi’s in Bj:

Y j =
1

nj

∑
Xi∈Bj

Yi.
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Finally, we define m̂(x) = Y j for all x ∈ Bj. We can write this as

m̂(x) =
k∑
j=1

Y j I(x ∈ Bj).

Here are some examples.

regressogram = function(x,y,left,right,k,plotit,xlab="",ylab="",sub=""){

### assumes the data are on the interval [left,right]

n = length(x)

B = seq(left,right,length=k+1)

WhichBin = findInterval(x,B)

N = tabulate(WhichBin)

m.hat = rep(0,k)

for(j in 1:k){

if(N[j]>0)m.hat[j] = mean(y[WhichBin == j])

}

if(plotit==TRUE){

a = min(c(y,m.hat))

b = max(c(y,m.hat))

plot(B,c(m.hat,m.hat[k]),lwd=3,type="s",

xlab=xlab,ylab=ylab,ylim=c(a,b),col="blue",sub=sub)

points(x,y)

}

return(list(bins=B,m.hat=m.hat))

}

pdf("regressogram.pdf")

par(mfrow=c(2,2))

### simulated example

n = 100

x = runif(n)

y = 3*sin(8*x) + rnorm(n,0,.3)

plot(x,y,pch=20)

out = regressogram(x,y,left=0,right=1,k=5,plotit=TRUE)

out = regressogram(x,y,left=0,right=1,k=10,plotit=TRUE)

out = regressogram(x,y,left=0,right=1,k=20,plotit=TRUE)

dev.off()
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### Bone mineral density versus age for men and women

pdf("bmd.pdf")

par(mfrow=c(2,2))

library(ElemStatLearn)

attach(bone)

age.male = age[gender == "male"]

density.male = spnbmd[gender == "male"]

out = regressogram(age.male,density.male,left=9,right=26,k=10,plotit=TRUE,

xlab="Age",ylab="Density",sub="Male")

out = regressogram(age.male,density.male,left=9,right=26,k=20,plotit=TRUE,

xlab="Age",ylab="Density",sub="Male")

age.female = age[gender == "female"]

density.female = spnbmd[gender == "female"]

out = regressogram(age.female,density.female,left=9,right=26,k=10,plotit=TRUE,xlab="Age",ylab="Density",sub="Female")

out = regressogram(age.female,density.female,left=9,right=26,k=20,plotit=TRUE,xlab="Age",ylab="Density",sub="Female")

dev.off()

From Figures 3 and 4 you can see two things. First, we need a way to choose k. (The answer
will be cross-validation). But also, m̂(x) is very unsmooth. To get a smoother estimator, we
will use kernel smoothing.

4 The Kernel Estimator

The idea of kernel smoothing is very simple. To estimate m̂(x) we will take a local average
of the Y ′i s. In other words, we average all Yi such that |Xi − x| ≤ h where h is some small
number called the bandwidth. We can write this estimator as

m̂(x) =

∑n
i=1K

(
x−Xi

h

)
Yi∑n

i=1K
(
x−Xi

h

)
where

K(z) =

{
1 if |z| ≤ 1

0 if |z| > 1.

The function K is called the boxcar kernel.
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Figure 3: Simulated data. Various choices of k.
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Figure 4: Bone density example. Men and women. Left plots use k = 10. Right plots use
k = 20.
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Figure 5: Boxcar kernel estimators for various choices of h.
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As you can see in Figure 5, this gives much smoother estimates than the regressogram. But
we can improve this even further by replacing K with a smoother function.

This leads us to the following definition. A one-dimensional smoothing kernel is any smooth
function K such that K(x) ≥ 0 and∫

K(x) dx = 1,

∫
xK(x)dx = 0 and σ2

K ≡
∫
x2K(x)dx > 0. (7)

Let h > 0 be a positive number, called the bandwidth. The Nadaraya–Watson kernel esti-
mator is defined by

m̂(x) ≡ m̂h(x) =

∑n
i=1 Yi K

(
x−Xi

h

)∑n
i=1K

(
x−Xi

h

) =
n∑
i=1

Yi`i(x) (8)

where `i(x) = K((x−Xi)/h)/
∑

jK((x−Xj)/h).

Thus m̂(x) is a local average of the Yi’s. It can be shown that there is an optimal kernel
called the Epanechnikov kernel. But the choice of kernel K is not too important. Estimates
obtained by using different kernels are usually numerically very similar. This observation is
confirmed by theoretical calculations which show that the risk is very insensitive to the choice
of kernel. What does matter much more is the choice of bandwidth h which controls the
amount of smoothing. Small bandwidths give very rough estimates while larger bandwidths
give smoother estimates. A common choice for the kernel is the normal density:

K(z) ∝ e−z
2/2.

This does not mean that we are assuming that the data are Normal. We are just using this
as a convenient way to define the smoothing weights.

Figure 6 shows the kernel estimator m̂(x) for 4 different choices of h using a Gaussian kernel.
As you can see, we get much nicer estimates. But we still need a way to choose the smoothing
parameter h. Before we discuss that, let’s first discuss linear smoothers.

5 The Kernel Estimator is a Linear Smoother

The kernel estimator m̂(x) is defined at each x. As we did for linear regression, we can also

compute the estimator at the original data points Xi. Again, we call Ŷi = m̂(Xi) the fitted
values. Note that

m̂h(Xi) =

∑n
j=1 Yi K

(
Xi−Xj

h

)
∑n

j=1K
(
Xi−Xj

h

) =
n∑
j=1

Yi`j(Xi) (9)
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Figure 6: Kernel estimators for various choices of h.
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where `j(x) = K((x −Xj)/h)/
∑

tK((x −Xt)/h). Let Ŷ = (Ŷ1, . . . , Ŷn), Y = (Y1, . . . , Yn)
and let L be the n× n matrix with entries Lij = `j(Xi). We then see that

Ŷ = LY. (10)

This looks a lot like the equation Ŷ = HY from linear regression.

The matrix L is called the smoothing matrix. It is like the hat matrix but it is not a
projection matrix. We call

ν = tr(L) =
∑
i

Lii

the effective degrees of freedom. As the bandwidth h gets smaller, ν gets larger. In other
words, small bandwidths correspond to more complex models.

The equation Ŷ = LY means that we can write each Ŷi as a linear combination of the Yi’s.
Because of this, we say that kernel regression is a linear smoother. This does not mean that
m̂(x) is linear. It just means that each Ŷi as a linear combination of the Yi’s.

The are many other linear smoothers besides kernel regression estimators but we will focus on
the kernel estimator for now. Remember: a linear smoother does not mean linear regression.

6 Choosing h by Cross-Validation

We will choose h by cross-validation. For simplicity, we focus on leave-one-out cross-
validation. Let m̂

(−i)
h be the kernel estimator (with bandwidth h) obtained after leaving

out (Xi, Yi). The cross-validation score is

CV (h) =
1

n

∑
i

(Yi − m̂(−i)
h (Xi))

2.

It turns out that there is a handy short cut formual for CV which is

CV (h) =
1

n

∑
i

(
(Yi − m̂h(Xi))

1− Lii

)2

. (11)

Our strategy is to fit m̂h for many values of h. We then compute CV (h) using (11). Then

we find ĥ to minimize CV (h). The bandwidth ĥ is the one we use.

Some people approximate the formula above replacing each Lii by the average value (1/n)
∑

i Lii =
(1/n)tr(L) = ν/n. If we replace Lii with ν/n we get this formula:

GCV (h) =
1(

1− ν
n

)2 1

n

∑
i

(Yi − m̂h(Xi))
2 (12)
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Figure 7: Cross validation (black) and generalized cross validation (red dotted line) versus
h and versus effective degrees of freedom. The bottom left plot is the kernel regression
estimator using the bandwidth that minimizes the cross-validation score.
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which is called generalized cross validation.

Figure 7 shows the cross-validation score and the generalized cross validation score. I plotted
it versus h and then I plotted it versus the effective degrees of freedom ν. The bottom left plot
is the kernel regression estimator using the bandwidth that minimizes the cross-validation
score.

Here is the code:

kernel = function(x,y,grid,h){

### kernel regression estimator at a grid of values

n = length(x)

k = length(grid)

m.hat = rep(0,k)

for(i in 1:k){

w = dnorm(grid[i],x,h)

m.hat[i] = sum(y*w)/sum(w)

}

return(m.hat)

}

kernel.fitted = function(x,y,h){

### fitted values and diaginal of smoothing matrix

n = length(x)

m.hat = rep(0,n)

S = rep(0,n)

for(i in 1:n){

w = dnorm(x[i],x,h)

w = w/sum(w)

m.hat[i] = sum(y*w)

S[i] = w[i]

}

return(list(fitted=m.hat,S=S))

}

CV = function(x,y,H){

### H is a vector of bandwidths

n = length(x)

k = length(H)

cv = rep(0,k)

nu = rep(0,k)

13



gcv = rep(0,k)

for(i in 1:k){

tmp = kernel.fitted(x,y,H[i])

cv[i] = mean(((y - tmp$fitted)/(1-tmp$S))^2)

nu[i] = sum(tmp$S)

gcv[i] = mean((y - tmp$fitted)^2)/(1-nu[i]/n)^2

}

return(list(cv=cv,gcv=gcv,nu=nu))

}

pdf("crossval.pdf")

par(mfrow=c(2,2))

bone = read.table("BoneDensity.txt",header=TRUE)

attach(bone)

age.female = age[gender == "female"]

density.female = spnbmd[gender == "female"]

H = seq(.1,5,length=20)

out = CV(age.female,density.female,H)

plot(H,out$cv,type="l",lwd=3,xlab="Bandwidth",ylab="Cross-validation Score")

lines(H,out$gcv,lty=2,col="red",lwd=3)

plot(out$nu,out$cv,type="l",lwd=3,xlab="Effective Degrees of Freedom",ylab="Cross-validation Score")

lines(out$nu,out$gcv,lty=2,col="red",lwd=3)

j = which.min(out$cv)

h = H[j]

grid = seq(min(age.female),max(age.female),length=100)

m.hat = kernel(age.female,density.female,grid,h)

plot(age.female,density.female,xlab="Age",ylab="Density")

lines(grid,m.hat,lwd=3,col="blue")

dev.off()

14



7 Analysis of the Kernel Estimator

Recall that the prediction error of m̂ is

E(Y − m̂h(X))2 = τ 2 +

∫
b2n(x)p(x)dx+

∫
vn(x)p(x)dx

where τ 2 is the unavoidable error, bn(x) = E(m̂h(x)) − m(x) is the bias and vn(x) =
Var(m̂h(x)) is the variance. The first term is unavoidable. It is the second two terms
that we can try to make small. That is, we would like to minimize the integrated mean
squared error

IMSE =

∫
b2n(x)p(x)dx+

∫
vn(x)p(x)dx.

It can be shown (under certain conditions) that∫
b2n(x)p(x)dx ≈ C1h

4

for some constant C1 and ∫
vn(x)p(x)dx ≈ C2

nh
.

Hence,

IMSE = C1h
4 +

C2

nh
.

If we minimize this expression over h we find that the best h is

hn =

(
C3

n

)1/5

where C3 = C2/(4C1). If we insert this hn into the IMSE we find that

IMSE =

(
C4

n

)4/5

.

What do we learn from this? First, the optimal bandwidth gets smaller as the sample size
increases. Second, the IMSE goes to 0 as n gets larger. But it goes to 0 slower than other
estimators your are used to. For example, if you estimate the mean µ with the sample
mean Y then E(Y − µ)2 = σ2/n. Roughly speaking, the mean squared error of parametric
estimators is something like 1/n but kernel estimators (and other nonparamettic estimators)
behave like (1/n)4/5 which goes to 0 more slowly. Slower convergence is the price of being
nonparametric.

The formula we derived for hn is interesting for helping our understanding of the theoretical
behavior of m̂. But we can’t use that formual in practice because those constants involve
quantities that depend on the unknown function m. So we use cross-validation to choose h
in practice.
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8 Variability Bands

We would like to get some idea of how accurate our estimator is. To estimate the standard
error of m̂h(x) we are going to use a tool called the bootstrap. In 402, you will see that the
bootstrap is a very general tool. Here we will only use it to get standard errors for our kernel
estimator.

Our data can be written as
Z1, . . . , Zn

where Zi = (Xi, Yi). Here is how the bootstrap works:

1. Compute the estimator m̂(x).

2. Choose a large number B. Usually, we take B = 1, 000 or B = 10, 000.

3. For j = 1, . . . , B do the following:

(a) Draw n observations, with replacement, from the original data {Z1, . . . , Zn}. Call
these observations Z∗1 , . . . , Z

∗
n. This is called a bootstrap sample.

(b) Compute a kernel estimator m̂∗j(x) from the bootstrap sample. (Note that we
compute m̂∗j(x) at every x.)

4. At each x, let se(x) be the standard deviation of the numbers m̂∗1(x), . . . , m̂∗B(x).

The resulting function se(x) is an estimate of the standard deviation of m̂(x). (I am actually
sweeping some technical details under the rug.) We can now plot m̂(x) + 2 se(x) and m̂(x)−
2 se(x). These are called variability bands. The are not actually valid confidence bands for
some technical reasons that we will not go into here. But they do give us an idea of the
variability of our estimator. An example is shown in Figure 8. Here is the code.

kernel = function(x,y,grid,h){

### kernel regression estimator at a grid of values

n = length(x)

k = length(grid)

m.hat = rep(0,k)

for(i in 1:k){

w = dnorm(grid[i],x,h)

m.hat[i] = sum(y*w)/sum(w)

}

return(m.hat)

}
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boot = function(x,y,grid,h,B){

### pointwise standard error for kernel regression using the bootstrap

k = length(grid)

n = length(x)

M = matrix(0,k,B)

for(j in 1:B){

I = sample(1:n,size=n,replace=TRUE)

xx = x[I]

yy = y[I]

M[,j] = kernel(xx,yy,grid,h)

}

s = sqrt(apply(M,1,var))

return(s)

}

bone = read.table("BoneDensity.txt",header=TRUE)

attach(bone)

age.female = age[gender == "female"]

density.female = spnbmd[gender == "female"]

h = .7

grid = seq(min(age.female),max(age.female),length=100)

plot(age.female,density.female)

mhat = kernel(age.female,density.female,grid,h)

lines(grid,mhat,lwd=3)

B = 1000

se = boot(age.female,density.female,grid,h,B)

lines(grid,mhat+2*se,lwd=3,lty=2,col="red")

lines(grid,mhat-2*se,lwd=3,lty=2,col="red")

9 Multiple Nonparametric Regression

Suppose now that the covariate is d-dimensional, Xi = (xi1, . . . , xid)
T . The regression equa-

tion is
Y = m(X1, . . . , Xd) + ε. (13)

A problem that occurs with smoothing methods is the curse of dimensionality. Estimation
gets harder very quickly as the dimension of the observations increases.
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Figure 8: Variability bands for the kernel estimator.

18



The IMSE of of most nonparametric regression estimators has the form n−4/(4+d). This
implies that the sample size needed for a given level of accuracy increases exponentially with
d. The reason for this phenomenon is that smoothing involves estimating a function m(x)
using data points in a local neighborhood of x. But in a high-dimensional problem, the data
are very sparse, so local neighborhoods contain very few points.

9.1 Kernels

The kernel estimator in the multivariate case is defined by

m̂(x) =

∑n
i=1 Yi K(‖x−Xi‖/h)∑n
i=1K(‖x−Xi‖/h)

. (14)

We now proceed as in the univariate case. For example, we use cross-validation to estimate
h.

9.2 Additive Models

Interpreting and visualizing a high-dimensional fit is difficult. As the number of covariates
increases, the computational burden becomes prohibitive. A practical approach is to use an
additive model. An additive model is a model of the form

m(x1, . . . , xd) = α +
d∑
j=1

mj(xj) (15)

where m1, . . . ,md are smooth functions.

The additive model is not well defined as we have stated it. We can add any constant to
α and subtract the same constant from one of the mj’s without changing the regression
function. This problem can be fixed in a number of ways; the simplest is to set α̂ = Y and
then regard the mj’s as deviations from Y . In this case we require that

∑n
i=1 m̂j(Xi) = 0

for each j.

There is a simple algorithm called backfitting for turning any one-dimensional regression
smoother into a method for fitting additive models. This is essentially a coordinate descent,
Gauss-Seidel algorithm.

The Backfitting Algorithm
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Initialization: set α̂ = Y and set initial guesses for m̂1, . . . , m̂d. Now iterate the following
steps until convergence. For j = 1, . . . , d do:

• Compute Ỹi = Yi − α̂−
∑

k 6=j m̂k(Xi), i = 1, . . . , n.

• Apply a smoother to Ỹ on Xj to obtain m̂j.

• Set m̂j(x)←− m̂j(x)− n−1
∑n

i=1 m̂j(Xi).

• end do.

In principle, we could use a different bandwidth hj for each m̂j. This is a lot of work. Instead,
it is common to use the same bandwidth h for each function.

9.3 Example

Here we consider predicting the price of cars based on some covariates.

library(mgcv)

D = read.table("CarData.txt",header=TRUE)

##data from Consumer Reports (1990)

attach(D)

names(D)

[1] "Price" "Mileage" "Weight" "Disp" "HP"

pairs(D)

out = gam(Price ~ s(Mileage) + s(Weight) + s(Disp) + s(HP))

summary(out)

#Family: gaussian

#Link function: identity

#

#Formula:

#Price ~ s(Mileage) + s(Weight) + s(Disp) + s(HP)

#

#Parametric coefficients:

# Estimate Std. Error t value Pr(>|t|)

#(Intercept) 12615.7 307.3 41.06 <2e-16 ***

#---

#Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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#

#Approximate significance of smooth terms:

# edf Ref.df F p-value

#s(Mileage) 4.328 5.314 1.897 0.12416

#s(Weight) 1.000 1.000 7.857 0.00723 **

#s(Disp) 1.000 1.000 11.354 0.00146 **

#s(HP) 4.698 5.685 3.374 0.00943 **

#---

#Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

#

#R-sq.(adj) = 0.66 Deviance explained = 72.4%

#GCV = 7.0853e+06 Scale est. = 5.6652e+06 n = 60

#

plot(out,lwd=3)

r = resid(out)

plot(Mileage,r);abline(h=0)

plot(Weight,r);abline(h=0)

plot(Disp,r);abline(h=0)

plot(HP,r);abline(h=0)
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Figure 9: The car price data.
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Figure 10: The car price data: estimated functions.
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Figure 11: The car price data: residuals
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