Lecture 3: Introducing Statistical Modeling

36-401, Fall 2017, Section B

1 Motivating

Let’s start this off with a motivating example. We’ll begin by loading some data
which comes from the Bureau of Economic Analysis, on the economic output of
cities in the U.S. (http://www.bea.gov/regional/gdpmetro/).

bea = read.csv("http://www.stat.cmu.edu/ " larry/=stat401/bea-2006.csv")

For each city — more precisely, each “Metropolitan Statistical Area”, which
ignores legal divisions of cities and counties and instead is based on patterns of
commuting — this records the name of the city, its population, its per-capita
“gross metropolitan product” in 2006 (the total value of goods and services
produced), and the share of the economy coming from four selected industries.

dim(bea)

## [1] 366 7

head(bea)

Hi#t MSA pcgmp pop finance prof.tech ict
## 1 Abilene, TX 24490 158700 0.09750 NA 0.01621
## 2 Akron, OH 32890 699300 0.12940  0.05440 NA
## 3 Albany, GA 24270 163000 0.08217 NA 0.00708
## 4 Albany-Schenectady-Troy, NY 36840 850300 0.15780  0.09399 0.04511
## 5 Albuquerque, NM 37660 816000 0.15990  0.09978 0.20500
## 6 Alexandria, LA 25490 152200 0.09152 0.03790 0.01134
##  management

## 1 NA

## 2 0.054310

## 3 NA

## 4 NA

## 5  0.006509

## 6  0.015210

Let’s add a new column, which records the total GMP, by multiplying the
output per person by the number of people:

bea$gmp <- bea$pcgmp * bea$pop

And now let’s look at this visually:


http://www.bea.gov/regional/gdpmetro/

plot(gmp ~ pop, data = bea, xlab = "Population", ylab = "Total GMP")
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The plot command, naturally enough, makes plots. The first argument to
it tells it what to plot: here, we’re telling it to plot gmp as a function of pop.
(The tilde sign, is used in such “formulas” to indicate that what goes on the left
is being treated as a function of what’s on the right.) The next argument tells
R where to look up the variables in the formula: in the data frame bea that we
just loaded. The other two arguments give the axis some sensible labels.

This plot shows, unsurprisingly, that larger cities have larger total economic
outputs. What is more remarkable is how closely the points fall around a straight
line. To see this, we’ll re-plot the points, and use the function abline to add
a straight line. To do this we need an intercept (the a) and a slope (the b).
A reasonable guess for the intercept is 0 (since presumably a city with no in-
habitants has no economy). One could reasonably guess the slope at 4 x 10%
dollars/person, say by noticing the city with a population of about ten million
(as it happens, Chicago) and seeing where it falls on the vertical axis.



plot(gmp ~ pop, data = bea, xlab = "Population", ylab = "Total GMP")
abline(a = 0, b = 40000)
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This isn’t bad at all, but it looks like it’s systematically too low for the larger
cities. This is suggestive that there may be differences between the economies
of large and small cities. Let’s explore this by looking at the per-capita figures.

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP")
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At this point, it becomes annoying that the larger cities in the US are so
much larger than the small ones. By using a linear scale for the horizontal axis,
we devote most of the plot to empty space around New York, Los Angeles and
Chicago, which makes it harder to see if there is any trend. A useful trick is to
switch to a logarithmic scale for that axis, where equal distances correspond to
equal multiples of population.

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP"
10g = "X")
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Two things are noticeable from this plot. First, there is a wide range of
per-capita GMP for smaller cities, which narrows as population grows. Second,
there seems to be an increasing trend, or at least an increasing lower limit.

Let’s restore the previous plot, but make it a bit less visually cluttered.

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP"
pch = 19, cex = 0.5)
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Let’s now calculate our first regression line. R has a function for estimating
linear models, with which we’ll become very familiar:

Im(pcgmp ~ pop, data = bea)

##

## Call:

## lm(formula = pcgmp ~ pop, data = bea)
##

## Coefficients:

## (Intercept) pop

## 3.128e+04 2.416e-03

The first argument to 1m is a formula, telling R which variable we're trying
to predict (the one on the left, here pcgmp), and which variable we’re trying to
predict it from (the one on the right, here pop), and what data set to take those
variables from (bea again)ﬂ R then estimates the coefficients of the best linear

IMuch more complicated formulas are possible, but this will do for now.



predictor — we will see later how it does this — and returns those coefficients,
along with a lot of other stuff which is invisible in this view.

The abline command is smart enough to get an intercept and a slope from
the output of 1m, so we can use it to decorate the plot:

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP",
pch = 19, cex = 0.5)
abline(Im(pcgmp ~ pop, data = bea), col = "blue")
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But why should we believe that line? R does it, but I hope by this point in
your life you don’t think “the computer says it, so it must be right” is ever a
good idea. Why prefer that blue line over this grey line, or the green one, or for
that matter over the orange curve?

plot(pcgmp ~ pop, data = bea, xlab = "Population", ylab = "Per-capita GMP",
pch = 19, cex = 0.5)

abline(1lm(pcgmp ~ pop, data = bea), col = "blue")

abline(a = 40000, b = 0, col = "grey")



abline(a = 20000, b = 40000/2e+07, col = "green")
lines(smooth.spline(x = bea$pop, y = bea$pcgmp, cv = TRUE), col = "orange")
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Why do we want to fit any lines here at all?

2 What Are Statistical Models For?

One basic use for these lines is as summaries. There is a lot of detail in those
figures — each one requires 366 x 2 = 732 numbers. This is a lot of information

to keep track of; it makes our heads hurt.

In many situations, we’d rather

ignore all of that precise detail and get away with a summary; we might want
to compress the 732 numbers into just an intercept and a slope that describe
the general trend or over-all shape of the data. There would be lots of ways
to do that, and which ones would make sense would depend on how we want
to use the compressed summary. We might, for instance, aim at being able to
recover the original data with minimal error from the summary, so we’d want a



line which came close to the original points. But we might also decide that it
was more important for the line to come closer to large cities than small ones
(since they contain so many more people), etc., etc.

There is nothing wrong with data compression — it is, in fact, one of the
fundamental technologies of modern life — but I have little more to say about
it (here). The one thing I will say is that anything you can calculate from the
data could, in principle, be used as a summary. Even if the calculation was
originally inspired by doing some sort of statistical inference, every statistic can
be a descriptive statistic.

If we want to go beyond describing, summarizing or compressing the data, we
enter the realm of inference — we try to reach out and extend our knowledge
from the data we have, to other variables we have not measured, or not measured
so directly. This is inherently somewhat risky, imprecise, and uncertain. In
statistics, we aim not only to draw such inferences, but to say something about
the level of risk, imprecision, and uncertainty which accompanies them.

You have, by this point in your educations, been thoroughly schooled in one
way in which inferences can be subject to uncertainty: when the data is just
a sample of a larger population, and we want to extrapolate from the sample
to the population. In fact, many people get taught that this is the only sort of
uncertainty statistics can handle.

If that were true, there would be no role for statistics in dealing with this
data set. It isn’t any sort of sample at all — every city in the US in 2006 really
is in there. So why, then, does it seem wrong to say that the slope of the optimal
linear predictor is ezactly 3.1277574 x 10*, 0.0024162? There are at least two
reasons.

One reason is that while we have measurements on the complete popula-
tion, those measurements are themselves subject to error. In this case, while
the people at the BEA try very hard to provide reliable numbers, their figures
are the result of a complicated process, at which error can creep in at many
points, from mistakes, accidents, deliberate lies, possibly-incorrect assumptions
made at various stages, the use of random sampling in some steps, etc., etcE|
Generally, just about every process of measurement is subject to some error:
there are flaws in the measurement instrument or process, or we measure some
imperfect proxy for what we’re really interested in, or the measurement is per-
turbed by unrepeatable, irrelevant disturbances. In fact, much of the theory of
mathematical statistics generally, and linear models specifically, was developed
in the 19th century by astronomers and other physical scientists to quantify,
and where possible reduce, the impacts of measurement error.

Some sources of measurement error are systematic: they tend to distort the
measurement in predictable, repeatable ways. They may make the measured
value larger than it should be, or smaller, or might shrink extreme values towards
more mediocre ones, etc. Ideally, these systematic errors should be identified and
modeled, so we can adjust for them. Other sources of error are (purely or merely)

2This is, among other things, a reason to want to compress the data, rather than just
memorizing it: some part of the data is just wrong.



statistical: they are directionless and do not repeat, but the distribution of
errors is predictable and stable; we can handle them with probability theory.

A second reason why it’s reasonable to do statistical inference on a complete
data set is that even the real values re somewhat accidental, and we’d like
to know the general, underlying trends or relationships. Take the BEA data
again: the exact values of the GMPs of all American cities in 2006 were to some
extent the results of accidents, of chance, unrepeatable causes, and this would
still be true even if we could measure those exact GMPs without error. To be
really concrete for a moment, the city with the highest per-capita income in
the data set is Bridgeport-Stamford-Norwalk, CT. This is a center for insurance
companies, banks and hedge funds. Exactly how much money they made in
2006 depended on things like just how many hurricanes there were in Florida,
wild fires in California, mortgages from Cleveland and Phoenix sold to small
towns in Germany, etc., etc. Even if one thinks that there is, ultimately, some
sort of deterministic explanation for all of these quantities, they’re plainly very
far removed from any general relationship between a city’s population and its
economic productivity. They really happen — they are not just measurement
errorsﬂ— but they could easily have happened a bit differently. Long experience
has shown that the distribution of these accidents is often stable, and can be
modeled with probability theoryﬂ When that happens, they are often called by
the more respectable name of fluctuations.

To sum up: whether it’s due to sampling, or measurement error, or fluctua-
tions, we often have good reason to think that our data could have been more
or less different. If we re-ran the experiment, or “re-wound the tape of history”
(S. J. Gould), the results would not have been quite the same. This means that
any statistic we calculate from the data would have been more or less different
as well. When we try to quantify uncertainty, we want to know how different
our calculations could have been.

To say anything useful here, we will need to make assumptions. Without
some assumptions, we can’t really say anything at all about how different the
data could, plausibly, have been. In statistics, a lot of accumulated experience
says that useful assumptions generally take the form of statistical models or
probability models.

In a statistical model, we act as though the variables we measure, and pos-
sibly others we don’t measure, are random variables. (We “model them as
random variables.”) The specification of a statistical model says what the
random variables are, and lays down more or less narrow restrictions on their
distributions and how they relate to each other. Here, for instance, are some
conceivable statistical models for the BEA data. In all of them, X stands for a

34“As I regularly find myself having to remind cadet risk managers with newly-minted
PhDs in financial econometrics, the Great Depression did actually happen; it wasn’t just a
particularly innaccurate observation of the underlying 4% rate of return on equities.” (http://
d-squareddigest.blogspot.com/2006/09/tail-events-phrase-considered-harmful.html)
4In fact, there are precise mathematical senses in which sufficiently complicated deter-

ministic processes end up looking just like random ones. If this intrigues you, see 7 and
?
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city’s population and Y for its per-capita GMP.

1. X ~ N(6.81 x 10°,2.42 x 10'%); Y|X ~ N(4.00 x 10*,8.50 x 107); X
independent across cities; Y independent across cities given their X’s.

2. X ~ N(ux,0%) for some mean pux and variance o%; Y|X ~ N(4.00 x
10%,8.50 x 107); Y independent across cities given their X’s.

3. X ~ N(ux,0%) for some mean pux and variance o%; Y|X ~ N(4.00 x
10*,62) for some variance o%; Y independent across cities given their
X's.

4. distribution of X unspecified; Y|X ~ N(4.00 x 10*,02) for some 02; Y
independent across cities given their X'’s.

5. distribution of X unspecified; Y| X ~ N(By+ p1z,0%) for some B, f1,0%;
Y independent across cities given their X'’s.

6. distribution of X unspecified; E [Y|X = z] = By + 1 for some By and Sy;
Var [Y|X = z] = 0 for some 0%; Y independent across cities given their
Xs.

7. distribution of X unspecified; E[Y|X = z] = 5y + f12 for some Sy and fi;
Y uncorrelated across cities given their X'’s.

As we go down this list of models, we make weaker and weaker assumptions
about the process which generated the data. This means that, with the same
data, we can infer less and less about that data-generating process. The very
first model specifies a single, complete, unambiguous distribution for the data.
If we assumed that model was true, we could then make all sorts of assertions
about the distribution of city population and economic output, without even
having to look at the data at all. Later models in the list leave more about the
data-generating process undetermined, so we can use the data to estimate those
parts of the model (e.g., the mean and variance of city populations in model
2, or the slope f8; in models from 4 on), or test hypotheses about them, etc.
Because a model specifies how the data variable X and Y are distributed, and
any statistics we calculate are functions of X and Y, a model also, implicitly,
tells us how those statistics are distributed?l These distributions of the statistics
are what we’ll use to quantify the uncertainty in our inferences.

The stronger the assumptions we make, the stronger the inferences we can
draw, if the assumptions are true. There is no virtue to strong conclusions which
rest on faulty premises. Therefore: we are going to go over how to draw these
inferences, but we are also going to go over checking model assumptions.

When confronting a data analysis problem, you first need to formulate a
statistical model. This is partly about absorbing what’s already known about

5Whether we can work out that distribution in a nice closed form is another question, but
mathematically exists, and there are ways to cope when there’s no closed form, as we’ll see
later in this class, and in greater detail in 402.
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the subjecdﬂ partly about looking for similar problems others have dealt with
and seeing what you can learn from them (i.e., analogy and tradition), and
partly about being inspired by initial explorations of the data. Once you have
a model, the two key tasks are inference within the model, and checking the
model.

Inference within the model is about doing calculations which presume the
model’s assumptions are true: estimation, or prediction, or hypothesis testing,
or confidence intervals, or what-have-you. This is usually what people actually
want out of the data analysis. Unfortunately, these inferences are only as good
as the modeling assumptions that they’re based on.

Model checking, on the other hand, is about seeing whether the assumptions
are really true. This includes formal goodness-of-fit testing, but also various
“specification tests” (some of which we will cover), the less formal checks called
“diagnostics”, and sheer judgment, often aided by visualizations. If the assump-
tions of the model we started with turn out to be wrong, we need to go back
and revise the model, either replacing the faulty assumptions with others, or
weakening them.

People usually list put within-model inference before model checking —
that’s the order our textbook uses — but that’s more because teachers, and
students, are generally more comfortable with the more cut-and-dried topic of
inference. That topic is extremely formalized and mathematical, with lots of
theory to guide us. In fact, for lots of inference problems there is an unambigu-
ous optimal procedure, which we should follow. Model checking, on the other
hand, is much less formalized, mathematical and algorithmic than inference, and
very little about it can be said to be definitely optimal or The Right Way To
Do It. Nonetheless, assumption checking is much more important. Impressive-
seeming inferences from strong-but-wrong assumptions don’t actually tell us
anything about the world, and are useless, no matter how much technical skill
they might demonstrate. When reading other people’s data analyses, you should
get into the habit of paying very close attention to how they check their models,
and you should apply that same habit to yourself.

3 The Simple Linear Regression Model

To make this philosophizing a bit more concrete, let’s introduce the most basic
of all statistical models that is actually useful for anything, the simple linear
regression model. This is a model with two random variables, X and Y,
where we are trying to predict Y from X. Here are the model’s assumptions:

1. The distribution of X is unspecified, possibly even deterministic;

2. Y|X = By + b1z + €, where € is a noise variable;

SFor instance, economists and geographers have long known about an “urban wage pre-
mium”, where otherwise-similar workers in bigger cities get paid more (7).
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2

3. € has mean 0, a constant variance o¢“, and is uncorrelated with X and

uncorrelated across observations.

The noise variable may represent measurement error, or fluctuations in Y,
or some combination of both. The assumption of additive noise is non-trivial
— it’s not absurd to imagine that either measurement error or fluctuations
might change Y multiplicatively (for instance). The assumption of a linear
functional form for the relationship between Y and X is non-trivial; lots of
non-linear relationships actually exist. The assumption of constant variance,
or homoskedasticity, is non-trivial; the non-correlation assumptions are non-
trivial. But the assumption that the noise has mean 0 is trivial. (Why?) Ideally,
all of the non-trivial assumptions will be checked, and we will talk later in the
course about ways to check them.

The assumptions I have just laid out, while they are non-trivial because they
could be violated (and are, in many situations), are still strong enough to let
us get a start on inference. While we will go into this in some detail next time,
let’s give this at least a start here.

Remember we saw last time that the optimal linear predictor of Y from
X has slope 81 = Cov[X,Y]/Var[X]. But both Cov[X,Y] and Var [X] are
functions of the true distribution. Rather than having that full distribution,
we merely have data points, say (z1,%1), (22,92),- .. (Tn,¥yn). How might we
estimate (1 from this data?

An obvious approach would be to use the data to find the sample covariance
and sample variance, and take their ratio. As a reminder, the sample variance
of X is

1
sk = - (z; —T)*
=1
while the sample covariance is
1 n
exy = — z; (i —T)(yi — )
i—

(Here T am writing Z for the sample average of the x;, and similarly for other
variables.)m So we’d have a sample (or empirical) slope

—~ cxy
fr=—5—
Sx

We can’t hope that 73’; = (1, but we can hope that as n — oo, E — Bi.
When an estimator converges on the truth like that, the estimator is called
consistent, and this is the most basic property a good estimator should have.
What do we need to assume in order for E — 517

7Some people prefer to define these with denominators n — 1 rather than n, to get unbiased
estimates of the population quantities. The way I am doing it will simplify some book-keeping
presently.

13



Let’s look at the sample covariance. A little algebra shows
1 n
exy = o Z ZiYi — TY 1)
i=1

According to the model, y; = (8o + f1x; + €;). So (after a little more algebra)

cxy = %in(ﬁo+ﬁlxi+6i)_§BO+/8137+6 (2)
i=1

= BoT + Pra? + Te — TPy — f1T° — T (3)

Brs% + Te — ze (4)

Because € has mean 0, as n — oo, the law of large numbers says € — 0. Because
€ is uncorrelated with z, using the law of large numbers again says that Te — 0
as well. So

cxy — Pisk

and therefore
X =
X Sx

2
—~ cxy | Bisk
61 = 82 /81

as desired.

As I said, this argument rests on all the model assumptions. Strictly speak-
ing, the estimator J is consistent under even weaker assumptions — it’s enough
that cxy — Cov[X,Y], and s% — Var[X]. On the other hand, it would be
nice to say more: we want to know how far from the truth our estimate is
likely to be, whether it tends to over- or under- estimate the slope, etc. we will
see in later lectures how the assumptions of the simple linear regression model
will let us say something about all of these matters, and how the even stronger
assumption that the noise is Gaussian will let us be even more precise.

(We will, T promise, come back to this data set, and the question of which
regression line, if any, best describes the relationship between a city’s size and
its economic output, but that, too, will have to wait for later.)

Exercises

To think through, not to turn in.

1. What, if anything, makes plot(pcgmp ~ log(pop), data=bea) a worse
plot than plot(pcgmp ~ pop, data=bea, log="x")?

2. Fill in the algebra for .
3. Fill in the algebra for .
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