
Lecture 8: Inference
36-401, Fall 2015, Section B

Having gone over the Gaussian-noise simple linear regression model, over ways of estimating
its parameters and some of the properties of the model, and over how to check the model’s as-
sumptions, we are now ready to begin doing some serious statistical inference within the model. In
previous lectures, we came up with point estimators of the parameters and the conditional mean
(prediction) function, but we weren’t able to say much about the margin of uncertainty around
these estimates. In this lecture we will focus on supplementing point estimates with reliable mea-
sures of uncertainty. This will naturally lead us to testing hypotheses about the true parameters
— again, we will want hypothesis tests which are unlikely to get the answer wrong, whatever the
truth might be.

To accomplish all this, we first need to understand the sampling distribution of our point
estimators. We can find them, mathematically, but they involve the unknown true parameters
in inconvenient ways. We will therefore work to find combinations of our estimators and the true
parameters with fixed, parameter-free distributions; we’ll get our confidence sets and our hypothesis
tests from them.

Throughout this lecture, I am assuming, unless otherwise noted, that all of the assumptions of
the Gaussian-noise simple linear regression model hold.

1 Sampling Distribution of β̂0, β̂1 and σ̂2

The Gaussian-noise simple linear regression model has three parameters: the intercept β0, the slope
β1, and the noise variance σ2. We’ve seen, previously, how to estimate all of these by maximum
likelihood; the MLE for the βs is the same as their least-squares estimates. These are

β̂1 =
cXY
s2X

=
n∑
i=1

Xi − x
ns2X

Yi (1)

β̂0 = y − β̂1x (2)

σ̂2 =
1

n

n∑
i=1

(Yi − (β̂0 + β̂1Xi))
2 (3)

We have also seen how to re-write the first two of these as a deterministic part plus a weighted
sum of the noise terms ε:

β̂1 = β1 +

n∑
i=1

Xi − x
ns2X

εi (4)

β̂0 = β0 +
1

n

n∑
i=1

(
1− xXi − x

s2X

)
εi (5)

Finally, we have our modeling assumption that the εi are independent Gaussians, εi ∼ N(0, σ2).
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1.1 Reminders of Basic Properties of Gaussian Distributions

Suppose U ∼ N(µ, σ2). By the basic algebra of expectations and variances, E [a+ bU ] = a + bµ,
while Var [a+ bU ] = b2σ2. This would be true of any random variable; a special property of
Gaussians.

Suppose U1, U2, . . . Un are independent Gaussians, with means µi and variances σ2i . Then

n∑
i=1

Ui ∼ N
(∑

i

µi,
∑
i

σ2i

)
That the expected values add up for a sum is true of all random variables; that the variances add
up is true for all uncorrelated random variables. That the sum follows the same type of distribution
as the summands is a special property of Gaussians.

1.2 Sampling Distribution of β̂1

Since we’re assuming Gaussian noise, the εi are independent Gaussians, εi ∼ N(0, σ2). Hence (using
the first basic property of Gaussians)

Xi − x
ns2X

εi ∼ N

(
0,

(
Xi − x
ns2X

)2

σ2

)
Thus, using the second basic property of Gaussians,

n∑
i=1

Xi − x
ns2X

εi ∼ N

(
0, σ2

n∑
i=1

(
Xi − x
ns2X

)2
)

(6)

= N

(
0,

σ2

ns2X

)
(7)

Using the first property of Gaussians again,

β̂1 ∼ N
(
β1,

σ2

ns2X

)
(8)

This is the distribution of estimates we’d see if we repeated the experiment (survey, observation,
etc.) many times, and collected the results. Every particular run of the experiment would give a
slightly different β̂1, but they’d average out to β1, the average squared difference from β1 would be
σ2/ns2X , and a histogram of them would follow the Gaussian probability density function (Figure
2).

It is a bit hard to use Eq. 8, because it involves two of the unknown parameters. We can
manipulate it a bit to remove one of the parameters from the probability distribution,

β̂1 − β1 ∼ N(0,
σ2

ns2X
)

but that still has σ2 on the right hand side, so we can’t actually calculate anything. We could write

β̂1 − β1
σ/
√
ns2X

∼ N(0, 1)

but now we’ve got two unknown parameters on the left-hand side, which is also awkward.
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# Simulate a Gaussian-noise simple linear regression model

# Inputs: x sequence; intercept; slope; noise variance; switch for whether to

# return the simulated values, or run a regression and return the coefficients

# Output: data frame or coefficient vector

sim.gnslrm <- function(x, intercept, slope, sigma.sq, coefficients=TRUE) {
n <- length(x)

y <- intercept + slope*x + rnorm(n,mean=0,sd=sqrt(sigma.sq))

if (coefficients) {
return(coefficients(lm(y~x)))

} else {
return(data.frame(x=x, y=y))

}
}

# Fix an arbitrary vector of x's

x <- seq(from=-5, to=5, length.out=42)

Figure 1: Code setting up a simulation of a Gaussian-noise simple linear regression model, along a fixed
vector of Xi values.

1.3 Sampling Distribution of β̂0

Starting from Eq. 5 rather than Eq. 4, an argument exactly parallel to the one we just went through
gives

β̂0 ∼ N(β0,
σ2

n

(
1 +

x2

s2X

)
)

It follows, again by parallel reasoning, that

β̂0 − β0√
σ2

n

(
1 + x2

s2X

) ∼ N(0, 1)

The right-hand side of this equation is admirably simple and easy for us to calculate, but the left-
hand side unfortunately involves two unknown parameters, and that complicates any attempt to
use it.

1.4 Sampling Distribution of σ̂2

It is mildly challenging, but certainly not too hard, to show that

E
[
σ̂2
]

=
n− 2

n
σ2

We can be much more specific. When εi ∼ N(0, σ2), it can be shown that

nσ̂2

σ2
∼ χ2

n−2
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# Run the simulation 10,000 times and collect all the coefficients

# What intercept, slope and noise variance does this impose?

many.coefs <- replicate(1e4, sim.gnslrm(x=x, 5, -2, 0.1, coefficients=TRUE))

# Histogram of the slope estimates

hist(many.coefs[2,], breaks=50, freq=FALSE, xlab=expression(hat(beta)[1]),

main="")

# Theoretical Gaussian sampling distribution

theoretical.se <- sqrt(0.1/(length(x)*var(x)))

curve(dnorm(x,mean=-2,sd=theoretical.se), add=TRUE,

col="blue")

Figure 2: Simulating 10,000 runs of a Gaussian-noise simple linear regression model, calculating β̂1 each
time, and comparing the histogram of estimates to the theoretical Gaussian distribution (Eq. 8, in blue).4



1.5 Standard Errors of β̂0 and β̂1

The standard error of an estimator is its standard deviation. We’ve just seen that the true
standard errors of β̂0 and β̂1 are, respectively,

se
[
β̂1

]
=

σ

sx
√
n

(9)

se
[
β̂0

]
=

σ√
nsX

√
s2X + x2 (10)

Unfortunately, these standard errors involve the unknown parameter σ2 (or its square root σ,
equally unknown to us).

We can, however, estimate the standard errors. The maximum-likelihood estimates just substi-
tute σ̂ for σ:

ŝe
[
β̂1

]
=

σ̂

sx
√
n

(11)

ŝe
[
β̂0

]
=

σ̂

sX
√
n

√
s2X + x2 (12)

For later theoretical purposes, however, things will work out slightly nicer if we use the de-biased
version, n

n−2 σ̂
2:

ŝe
[
β̂1

]
=

σ̂

sx
√
n− 2

(13)

ŝe
[
β̂0

]
=

σ̂

sx
√
n− 2

√
s2X + x2 (14)

These standard errors — approximate or estimated though they be — are one important way
of quantifying how much uncertainty there is around our point estimates. However, we can’t use
them, alone to say anything terribly precise about, say, the probability that β1 is in the interval

[β̂1− ŝe
[
β̂1

]
, β̂1− ŝe

[
β̂1

]
], which is the sort of thing we’d want to be able to give guarantees about

the reliability of our estimates.

2 Sampling distribution of (β̂ − β)/ŝe
[
β̂
]

It should take only a little work with the properties of the Gaussian distribution to convince yourself
that

β̂1 − β1
se
[
β̂1

] ∼ N(0, 1)
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the standard Gaussian distribution. If the Oracle told us σ2, we’d know se
[
β̂1

]
, and so we could

assert that (for example)

P
(
β1 − 1.96se

[
β̂1

]
≤ β̂1 ≤ β1 + 1.96se

[
β̂1

])
(15)

= P
(
−1.96se

[
β̂1

]
≤ β̂1 − β1 ≤ 1.96se

[
β̂1

])
(16)

= P

−1.96 ≤ β̂1 − β1
se
[
β̂1

] ≤ 1.96

 (17)

= Φ(1.96)− Φ(−1.96) = 0.95 (18)

where Φ is the cumulative distribution function of the N(0, 1) distribution.
Since the oracles have fallen silent, we can’t use this approach. What we can do is use the

following fact:

Proposition 1 If Z ∼ N(0, 1), S2 ∼ χ2
d, and Z and S2 are independent, then

Z√
S2/d

∼ td

(I call this a proposition, but it’s almost a definition of what we mean by a t distribution with d
degrees of freedom. Of course, if we take this as the definition, the proposition that this distribu-
tion has a probability density ∝ (1 + x2/d)−(d+1)/2 would become yet another proposition to be
demonstrated.)

Let’s try to manipulate (β̂1 − β1)/ŝe
[
β̂1

]
into this form.

β̂1 − β1
ŝe
[
β̂1

] =
β̂1 − β1

σ

σ

ŝe
[
β̂1

]
=

β̂1−β1
σ

ŝe[β̂1]
σ

=
N(0, 1/ns2X)

σ̂
sxσ
√
n−2

=
sXN(0, 1/ns2X)

σ̂
σ
√
n−2

=
N(0, 1/n)

σ̂
σ
√
n−2

=

√
nN(0, 1/n)
√
nσ̂

σ
√
n−2

=
N(0, 1)√
nσ̂2

σ2
1

n−2

=
N(0, 1)√

χ2
n−2/(n− 2)

= tn−2

where in the last step I’ve used the proposition I stated (without proof) above.
To sum up:

Proposition 2 Using the ŝe
[
β̂1

]
of Eq. 13,

β̂1 − β1
ŝe
[
β̂1

] ∼ tn−2 (19)
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Notice that we can compute ŝe
[
β̂1

]
without knowing any of the true parameters — it’s a pure

statistic, just a function of the data. This is a key to actually using the proposition for anything
useful.

By exactly parallel reasoning, we may also demonstrate that

β̂0 − β0
ŝe
[
β̂0

] ∼ tn−2
3 Confidence Intervals and Tests

Define k ≡ k(n, α) such that ∫ k(n,α)

−k(n,α)
f(u)du = 1− α

where f is the density of a tn−2 distribution. Let s = ŝe(β̂1). A 1− α confidence interval for β1 is

C =
[
β̂1 − ks, β̂1 + ks

]
.

To verify this, note that

P (β1 ∈ C) = P (β̂1 − ks ≤ β1 ≤ β̂1 + ks) = P

(
−k ≤ β̂1 − β1

s
< k

)
= P (−k < T < k) = 1− α

where T denotes a random var iable with a tn−2 distribution. So the interval traps β1 with proba-
bility 1− α.

Suppose we want to test

H0 : β1 = 0 versus H1 : β1 6= 0.

We can just reject H0 is 0 is not in C. Equivalently, reject H0 if

|β̂1|
s

> k(n, α).

This is called the Wald test.

Width of the confidence interval Notice that the width of the confidence interval is 2k(n, α)ŝe
[
β̂1

]
.

This tells us what controls the width of the confidence interval:

1. As α shrinks, the interval widens. (High confidence comes at the price of big margins of
error.)

2. As n grows, the interval shrinks. (Large samples mean precise estimates.)

3. As σ2 increases, the interval widens. (The more noise there is around the regression line, the
less precisely we can measure the line.)

4. As s2X grows, the interval shrinks. (Widely-spread measurements give us a precise estimate
of the slope.)
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What about β0? By exactly parallel reasoning, a 1 − α confidence interval for β0 is [β̂0 −
k(n, α)ŝe

[
β̂0

]
, β̂0 + k(n, α)ŝe

[
β̂0

]
].

What about σ2? See Exercise 1.

What α should we use? It’s become conventional to set α = 0.05. To be honest, this owes more
to the fact that the resulting k tends to 1.96 as n→∞, and 1.96 ≈ 2, and most psychologists and
economists could multiply by 2, even in 1950, than to any genuine principle of statistics or scientific
method. A 5% error rate corresponds to messing up about one working day in every month, which
you might well find high. On the other hand, there is nothing which stops you from increasing α.
It’s often illuminating to plot a series of confidence sets, at different values of α.

What about power? The coverage of a confidence set is the probability that it includes the
true parameter value. This is not, however, the only virtue we want in a confidence set; if it was, we
could just say “Every possible parameter is in the set”, and have 100% coverage no matter what.
We would also like the wrong values of the parameter to have a high probability of not being in the
set. Just as the coverage is controlled by the size / false-alarm probability / type-I error rate α of
the hypothesis test, the probability of excluding the wrong parameters is controlled by the power
/ miss probability / type-II error rate. Test with higher power exclude (correctly) more parameter
values, and give smaller confidence sets.

3.1 Confidence Sets and Hypothesis Tests

There is a general relationship between confidence sets and hypothesis tests.

1. Inverting any hypothesis test gives us a confidence set.

2. If we have a way of constructing a 1− α confidence set, we can use it to test the hypothesis
that β = β∗: reject when β∗ is outside the confidence set, retain the null when β∗ is inside
the set.

I will leave it as a pair of exercises (2 and 3) to that inverting a test of size α gives a 1−α confidence
set, and that inverting a 1− α confidence set gives a test of size α.

3.2 Large-n Asymptotics

As n→∞, σ̂2 → σ2. It follows (by continuity) that ŝe
[
β̂
]
→ se

[
β̂
]
. Hence,

β̂ − β

ŝe
[
β̂
] → N(0, 1)

which considerably simplifies the sampling intervals and confidence sets; as n grows, we can forget
about the t distribution and just use the standard Gaussian distribution. Figure 3 plots the
convergence of k(n, α) towards the k(∞, α) we’d get from the Gaussian approximation. As you
can see from the figure, by the time n = 100 —a quite small data set by modern standards — the
difference between the t distribution and the standard-Gaussian is pretty trivial.
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α = 0.01
α = 0.05
α = 0.5

curve(qt(0.995,df=x-2),from=3,to=1e4,log="x", ylim=c(0,10),

xlab="Sample size (n)", ylab=expression(k(n,alpha)),col="blue")

abline(h=qnorm(0.995),lty="dashed",col="blue")

curve(qt(0.975,df=x-2), add=TRUE)

abline(h=qnorm(0.975),lty="dashed")

curve(qt(0.75,df=x-2), add=TRUE, col="orange")

abline(h=qnorm(0.75), lty="dashed", col="orange")

legend("topright", legend=c(expression(alpha==0.01), expression(alpha==0.05),

expression(alpha==0.5)),

col=c("blue","black","orange"), lty="solid")

Figure 3: Convergence of k(n, α) as n → ∞, illustrated for α = 0.01, α = 0.05 and α = 0.5. (Why do I
plot the 97.5th percentile when I’m interested in α = 0.05?)9



4 Statistical Significance: Uses and Abuses

4.1 p-Values

The test statistic for the Wald test,

T =
β̂1 − β∗1
ŝe
[
β̂1

]
has the nice, intuitive property that it ought to be close to zero when the null hypothesis β1 = β∗1
is true, and take large values (either positive or negative) when the null hypothesis is false. When
a test statistic works like this, it makes sense to summarize just how bad the data looks for the
null hypothesis in a p-value: when our observed value of the test statistic is Tobs, the p-value is

P = P (|T | ≥ |Tobs|)

calculating the probability under the null hypothesis. (I write a capital P here as a reminder that
this is a random quantity, though it’s conventional to write the phrase “p-value” with a lower-case
p.) This is the probability, under the null, of getting results which are at least as extreme as what
we saw. It should be easy to convince yourself that rejecting the null in a level-α test is the same
as getting a p-value < α.

It is not too hard (Exercise 4) to show that P has a uniform distribution over [0, 1] under the
null hypothesis.

4.2 p-Values and Confidence Sets

When our test lets us calculate a p-value, we can form a 1− α confidence set by taking all the β’s
where the p-value is ≥ α. Conversely, if we have some way of making confidence sets already, we
can get a p-value for the hypothesis β = β∗; it’s the largest α such that β∗ is in the 1−α confidence
set.

4.3 Statistical Significance

If we test the hypothesis that β1 = β∗1 and reject it, we say that the difference between β1 and β∗1
is statistically significant. Since, as I mentioned, many professions have an overwhelming urge
to test the hypothesis β1 = 0, it’s common to hear people say that “β1 is statistically significant”
when they mean “β1 is difference from 0 is statistically significant”.

This is harmless enough, as long as we keep firmly in mind that “significant” is used here as a
technical term, with a special meaning, and is not the same as “important”, “relevant”, etc. When
we reject the hypothesis that β1 = 0, what we’re saying is “It’s really implausibly hard to fit this
data with a flat line, as opposed to one with a slope”. This is informative, if we had serious reasons
to think that a flat line was a live option.

It is incredibly common for researchers from other fields, and even some statisticians, to reason
as follows: “I tested whether β1 = 0 or not, and I retained the null; therefore β1 is insignificant,
and I can ignore it.” This is, of course, a complete fallacy.

To see why, it is enough to realize that there are (at least) two reasons why our hypothesis test
might retain the null β1 = 0:

1. β1 is, in fact, zero,
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2. β1 6= 0, but ŝe
[
β̂1

]
is so large that we can’t tell anything about β1 with any confidence.

There is a very big difference between data which lets us say “we can be quite confident that the
true β1 is, if not perhaps exactly 0, then very small”, and data which only lets us say “we have
no earthly idea what β1 is, and it may as well be zero for all we can tell.” It is good practice to
always compute a confidence interval, but it is especially important to do so when you retain the
null, so you know whether you can say “this parameter is zero to within such-and-such a (small)
precision”, or whether you have to admit “I couldn’t begin to tell you what this parameter is”.

Substantive vs. statistical significance Even a huge β1, which it would be crazy to ignore in

any circumstance, can be statistically insignificant, so long as ŝe
[
β̂1

]
is large enough. Conversely,

any β1 which isn’t exactly zero, no matter how close it might be to 0, will become statistically

significant at any threshold once ŝe
[
β̂1

]
is small enough. Since, as n→∞,

ŝe
[
β̂1

]
→ σ

sX
√
n

we can show that ŝe
[
β̂1

]
→ 0, and β̂1

ŝe[β̂1]
→ ±∞, unless β1 is exactly 0 (see below).

Statistical significance is a weird mixture of how big the coefficient is, how big a sample we’ve got,
how much noise there is around the regression line, and how spread out the data is along the x axis.
This has so little to do with “significance” in ordinary language that it’s pretty unfortunate we’re
stuck with the word; if the Ancestors had decided to say “statistically detectable” or “statistically
distinguishable from 0”, we might have avoided a lot of confusion.

If you confuse substantive and statistical significance in this class, it will go badly for you.

4.4 Appropriate Uses of p-Values and Significance Testing

I do not want this section to give the impression that p-values, hypothesis testing, and statistical
significance are unimportant or necessarily misguided. They’re often used badly, but that’s true
of every statistical tool from the sample mean on down the line. There are certainly situations
where we really do want to know whether we have good evidence against some exact statistical
hypothesis, and that’s just the job these tools do. What are some of these situations?

Model checking Our statistical models often make very strong, claims about the probability
distribution of the data, with little wiggle room. The simple linear regression model, for instance,
claims that the regression function is exactly linear, and that the noise around this line has exactly
constant variance. If we test these claims and find very small p-values, then we have evidence that
there’s a detectable, systematic departure from the model assumptions, and we should re-formulate
the model.

Actual scientific interest Some scientific theories make very precise predictions about coeffi-
cients. According to Newton, the gravitational force between two masses is inversely proportional
to the square of the distance between them, ∝ r−2. The prediction is exactly ∝ r−2, not ∝ r−1.99

nor ∝ r−2.05. Measuring that exponent and finding even tiny departures from 2 would be big news,
if we had reason to think they were real and not just noise. One of the most successful theories
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in physics, quantum electrodynamics, makes predictions about some properties of hydrogen atoms
with a theoretical precision of one part in a trillion; finding even tiny discrepancies between what
the theory predicts and what we estimate would force us to rethink lots of physics. Experiments to
detect new particles, like the Higgs boson, essentially boil down to hypothesis testing, looking for
deviations from theoretical predictions which should be exactly zero if the particle doesn’t exist.

Outside of the natural sciences, however, it is harder to find examples of interesting, exact null
hypothesis which are, so to speak, “live options”. The best I can come up with are theories of
economic growth and business cycles which predict that the share of national income going to labor
(as opposed to capital) should be constant over time. Otherwise, in the social sciences, there’s
usually little theoretical reason to think that certain regression coefficients should be exactly zero,
or exactly one, or anything else.

5 Confidence Sets and p-Values in R

When we estimate a model with lm, R makes it easy for us to extract the confidence intervals of
the coefficients:

confint(object, level=0.95)

Here object is the name of the fitted model object, and level is the confidence level; if you
want 95% confidence, you can omit that argument. For instance:

library(gamair); data(chicago)

death.temp.lm <- lm(death ~ tmpd, data=chicago)

confint(death.temp.lm)

## 2.5 % 97.5 %

## (Intercept) 128.8783687 131.035734

## tmpd -0.3096816 -0.269607

confint(death.temp.lm, level=0.90)

## 5 % 95 %

## (Intercept) 129.0518426 130.8622598

## tmpd -0.3064592 -0.2728294

If you want p-values for the coefficients, those are conveniently computed as part of the summary
function:

coefficients(summary(death.temp.lm))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 129.9570512 0.55022802 236.18763 0.00000e+00

## tmpd -0.2896443 0.01022089 -28.33845 3.23449e-164

Notice how this actually gives us an array with four columns: the point estimate, the standard
error, the t statistic, and finally the p-value. Each row corresponds to a different coefficient of the
model. If we want, say, the p-value of the intercept, that’s
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coefficients(summary(death.temp.lm))[1,4]

## [1] 0

The summary function will also print out a lot of information about the model:

summary(death.temp.lm)

##

## Call:

## lm(formula = death ~ tmpd, data = chicago)

##

## Residuals:

## Min 1Q Median 3Q Max

## -42.275 -9.018 -0.754 8.187 305.952

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 129.95705 0.55023 236.19 <2e-16 ***

## tmpd -0.28964 0.01022 -28.34 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.22 on 5112 degrees of freedom

## Multiple R-squared: 0.1358,Adjusted R-squared: 0.1356

## F-statistic: 803.1 on 1 and 5112 DF, p-value: < 2.2e-16

As my use of coefficients(summary(death.temp.lm)) above suggests, the summary function
actually returns a complex object, which can be stored for later access, and printed. Controlling
how it gets printed is done through the print function:

print(summary(death.temp.lm), signif.stars=FALSE, digits=3)

##

## Call:

## lm(formula = death ~ tmpd, data = chicago)

##

## Residuals:

## Min 1Q Median 3Q Max

## -42.27 -9.02 -0.75 8.19 305.95

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 129.9571 0.5502 236.2 <2e-16

## tmpd -0.2896 0.0102 -28.3 <2e-16

##

## Residual standard error: 14.2 on 5112 degrees of freedom

## Multiple R-squared: 0.136,Adjusted R-squared: 0.136

## F-statistic: 803 on 1 and 5112 DF, p-value: <2e-16
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5.1 Coverage of the Confidence Intervals: A Demo

Here is a little computational demonstration of how the confidence interval for a parameter is
a random parameter, and how it covers the true parameter value with the probability we want.
I’ll repeat many simulations of the model from Figure 2, calculate the confidence interval on each
simulation, and plot those. I’ll also keep track of how often, in the first m simulations, the confidence
interval covers the truth; this should converge to 1− α as m grows.

Exercises

To think through or to practice on, not to hand in.

1. Confidence interval for σ2: Start with the observation that nσ̂2/σ2 ∼ χ2
n−2.

(a) Find a formula for the 1− α sampling interval for σ̂2, in terms of the CDF of the χ2
n−2

distribution, α, n and σ2. (Some of these might not appear in your answer.) Is the
width of your sampling interval the same for all σ2, the way the width of the sampling
interval for β̂1 doesn’t change with β1?

(b) Fix α = 0.05, n = 40, and plot the sampling intervals against σ2.

(c) Find a formula for the 1− α confidence interval for σ2, in terms of σ̂2, the CDF of the
χ2
n−2 distribution, α and n.

2. Suppose we start a way of testing the hypothesis β = β∗ which can be applied to any β∗,
and which has size (false alarm / type I error) probability α for β∗. Show that the set of β
retained by their tests is a confidence set, with confidence level 1 − α. What happens if the
size is ≤ α for all β∗ (rather than exactly α)?

3. Suppose we start from a way of creating confidence sets which we know has confidence level
1−α. We test the hypothesis β = β∗ by rejecting when β∗ is outside the confidence set, and
retaining when β∗ is inside the confidence set. Show that the size of this test is α. What
happens if the initial confidence level is ≥ 1− α, rather exactly 1− α?

4. Prove that the p-value P is uniformly distributed under the null hypothesis. You may,
throughout, assume that the test statistic T has a continuous distribution.

(a) Show that if Q ∼ Unif(0, 1), then P = 1−Q has the same distribution.

(b) Let X be a continuous random variable with CDF F . Show that F (X) ∼ Unif(0, 1).
Hint: the CDF of the uniform distribution FUnif(0,1)(x) = x.

(c) Show that P , as defined, is 1− F|T |(|Tobs|).
(d) Using the previous parts, show that P ∼ Unif(0, 1).

5. Use Eq. ?? to show Eq. ??, following the derivation of Eq. ??.
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# Run 1000 simulations and get the confidence interval from each

CIs <- replicate(1000, confint(lm(y~x,data=sim.gnslrm(x=x,5,-2,0.1,FALSE)))[2,])

# Plot the first 100 confidence intervals; start with the lower limits

plot(1:100, CIs[1,1:100], ylim=c(min(CIs),max(CIs)),

xlab="Simulation number", ylab="Confidence limits for slope")

# Now the lower limits

points(1:100, CIs[2,1:100])

# Draw line segments connecting them

segments(x0=1:100, x1=1:100, y0=CIs[1,1:100], y1=CIs[2,1:100], lty="dashed")

# Horizontal line at the true coefficient value

abline(h=-2, col="grey")
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# For each simulation, check whether the interval covered the truth

covered <- (CIs[1,] <= -2) & (CIs[2,] >= -2)

# Calculate the cumulative proportion of simulations where the interval

# contained the truth, plot vs. number of simulations.

plot(1:length(covered), cumsum(covered)/(1:length(covered)),

xlab="Number of simulations",

ylab="Sample coverage proportion", ylim=c(0,1))

abline(h=0.95, col="grey")
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