
Lecture 10: F -Tests, ANOVA and R2

1 ANOVA

We saw that we could test the null hypothesis that β1 = 0 using the statistic (β̂1−0)/ŝe. (Although
I also mentioned that confidence intervals are generally more important than testing). There is
another approach called Analysis of Variance (ANOVA). It’s out-dated but it is in the book and
you should know how it works.

The idea is to compare two models:

Y = β0 + ε versus Y = β0 + β1X + ε.

If we fit the first model, the least squares estimator is β̂0 = Y . The idea is not to create a statistic
that measures how much better the second model is than the first model. The residual sums iof
squares (RSS) is thus

∑
i(Yi − Y )2. This is called the total sums of squares and is denoted by

SStotal =
∑

i(Yi−Y )2. If we fit thw second model (the usual linear model) we get a smaller residual
sums of squares, RSS =

∑
i e

2
i .

The difference SStotal − RSS is called the sums of squares due to regression and is denoted by
SSreg. If β1 = 0 we expect this to be small. In the olden days, poeple summarized this in a ANOVA
table lioke this:

Source df SS MS F p-value

Regression 1 SSreg MSreg =
SSreg
1 F =

MSreg
MSres

Residual n-2 RSS σ̂2 = RSS
n−2

Total n-1 SStotal

The degrees of freedom (df) are just numbers that are defined, frankly, to make things work
right. The mean squared errors (MS) are the sums of squares divided by the df. The F test is

F =
MSreg

MSres
.

UnderH0, the statistic has a known distribution called the F distribution. This distribution depends
on two parameters (just as the χ2 distribution depends on one parameter). These are called the
degrees of freedom for the F distribution. We denote the distribution by F1,n−2. The p-value is

P (F > Fobserved)

where F ∼ F1,n−2 and Fobserved is the actual observed value you comoute from the data.
This is equivalent to using our previous test and squaring it.
A little more formally, an F random variable is defined by

χ2
a/a

χ2
b/b

when χ2
a and χ2

b are independent.
Since χ2 distributions arise from sums of Gaussians, F -distributed random variables tend to

arise when we are dealing with ratios of sums of Gaussians. The MS terms in our table are
independent χ2 random variables under the usual assumptions.
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2 ANOVA in R

The easiest way to do this in R is to use the anova function. This will give you an analysis-of-
variance table for the model. The actual object the function returns is an anova object, which is a
special type of data frame. The columns record, respectively, degrees of freedom, sums of squares,
mean squares, the actual F statistic, and the p value of the F statistic. What we’ll care about will
be the first row of this table, which will give us the test information for the slope on X.

Let’s do an example:

library(gamair)

out = lm(death ~ tmpd,data=chicago)

anova(out)

The output looks like this:

## Analysis of Variance Table

##

## Response: death

## Df Sum Sq Mean Sq F value Pr(>F)

## tmpd 1 162473 162473 803.07 < 2.2e-16 ***

## Residuals 5112 1034236 202

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Assumptions In deriving the F distribution, it is absolutely vital that all of the assumptions of
the Gaussian-noise simple linear regression model hold: the true model must be linear, the noise
must be Gaussian, the noise variance must be constant, the noise must be independent of X and
independent across measurements. The only hypothesis being tested is whether, maintaining all
these assumptions, we must reject the flat model β1 = 0 in favor of a line at an angle. In particular,
the test never doubts that the right model is a straight line.

ANOVA is an historical relic. In serious applied work from the modern (say, post-1985) era,
I have never seen any study where filling out an ANOVA table for a regression, etc., was at all
important.

3 What the F Test Really Tests

The textbook (§2.7–2.8) goes into great detail about an F test for whether the simple linear
regression model “explains” (really, predicts) a “significant” amount of the variance in the response.
What this really does is compare two versions of the simple linear regression model. The null
hypothesis is that all of the assumptions of that model hold, and the slope, β1, is exactly 0. (This
is sometimes called the “intercept-only” model, for obvious reasons.) The alternative is that all
of the simple linear regression assumptions hold with β1 ∈ R. The alternative, non-zero-slope
model will always fit the data better than the null, intercept-only model; the F test asks if the
improvement in fit is larger than we’d expect under the null.

There are situations where it is useful to know about this precise quantity, and so run an F
test on the regression. It is hardly ever, however, a good way to check whether the simple linear
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regression model is correctly specified, because neither retaining nor rejecting the null gives us
information about what we really want to know.

Suppose first that we retain the null hypothesis, i.e., we do not find any significant share of
variance associated with the regression. This could be because (i) the intercept-only model is right;
(iii) β1 6= 0 but the test doesn’t have enough power to detect departures from the null. We don’t
know which it is. There is also possibility that the real relationship is nonlinear, but the best linear
approximation to it has slope (nearly) zero, in which case the F test will have no power to detect
the nonlinearity.

Suppose instead that we reject the null, intercept-only hypothesis. This does not mean that the
simple linear model is right. It means that the latter model predicts better than the intercept-only
model — too much better to be due to chance. The simple linear regression model can be absolute
garbage, with every single one of its assumptions flagrantly violated, and yet better than the model
which makes all those assumptions and thinks the optimal slope is zero.

Neither the F test of β1 = 0 vs. β1 6= 0 nor the Wald/t test of the same hypothesis tell us
anything about the correctness of the simple linear regression model. All these tests presume the
simple linear regression model with Gaussian noise is true, and check a special case (flat line) against
the general one (titled line). They do not test linearity, constant variance, lack of correlation, or
Gaussianity.

4 R2

Another quantity that gets mentioned a lot in regression (which is also a historical relic) is R2. It
is defined by

R2 =
SSreg

SStotal
.

It is often described as “the fraction of variability explained by the regression.” It can be shown
that it can be written as R2 = r2 where

r =
̂Cov(X,Y)

sXsY

in other words, the correlation coefficient squared.
R2 will be 0 when β̂1 = 0. On the other hand, if all the residuals are zero, then R2 = 1. It is

not too hard to show that R2 can’t possible be bigger than 1, so we have marked out the limits: a
sample slope of 0 gives an R2 of 0, the lowest possbile, and all the data points falling exactly on a
straight line gives an R2 of 1, the largest possible.

What does R2 converge to as n→∞. The population version is

R2 =
Var [m(X)]

Var [Y ]
(1)

=
Var [β0 + β1X]

Var [β0 + β1X + ε]
(2)

=
Var [β1X]

Var [β1X + ε]
(3)

=
β21Var [X]

β21Var [X] + σ2
(4)
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Since all our parameter estimates are consistent, and this formula is continuous in all the parameters,
the R2 we get from our estimate will converge on this limit.

Unfortunately, a lot of myths about R2 have become endemic in the scientific community, and
it is vital at this point to immunize you against them.

1. The most fundamental is that R2 does not measure goodness of fit.

(a) R2 can be arbitrarily low when the model is completely correct. Look at Eq. 4. By making
Var [X] small, or σ2 large, we drive R2 towards 0, even when every assumption of the
simple linear regression model is correct in every particular.

(b) R2 can be arbitrarily close to 1 when the model is totally wrong. There is, indeed, no
limit to how high R2 can get when the true model is nonlinear. All that’s needed is for
the slope of the best linear approximation to be non-zero, and for Var [X] to get big.

2. R2 is also pretty useless as a measure of predictability.

(a) R2 says nothing about prediction error. R2 can be anywhere between 0 and 1 just by
changing the range of X. Mean squared error is a much better measure of how good
predictions are; better yet are estimates of out-of-sample error which we’ll cover later in
the course.

(b) R2 says nothing about interval forecasts. In particular, it gives us no idea how big
prediction intervals, or confidence intervals for m(x), might be.

3. R2 cannot be compared across data sets.

4. R2 cannot be compared between a model with untransformed Y and one with transformed
Y , or between different transformations of Y .

5. The one situation where R2 can be compared is when different models are fit to the same
data set with the same, untransformed response variable. Then increasing R2 is the same as
decreasing in-sample MSE (by Eq. ??). In that case, however, you might as well just compare
the MSEs.

6. It is very common to say that R2 is “the fraction of variance explained” by the regression.
But it is also extremely easy to devise situations where R2 is high even though neither one
could possible explain the other.

At this point, you might be wondering just what R2 is good for — what job it does that isn’t
better done by other tools. The only honest answer I can give you is that I have never found a
situation where it helped at all. If I could design the regression curriculum from scratch, I would
never mention it. Unfortunately, it lives on as a historical relic, so you need to know what it is,
and what mis-understandings about it people suffer from.

5 The Correlation Coefficient

As you know, the correlation coefficient between X and Y is

ρXY =
Cov [X,Y ]√

Var [X] Var [Y ]
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which lies between −1 and 1. It takes its extreme values when Y is a linear function of X.
Recall, from lecture 1, that the slope of the ideal linear predictor β1 is

Cov [X,Y ]

Var [X]

so

ρXY = β1

√
Var [X]

Var [Y ]
.

As we saw, R2 is just ρ̂2XY .

6 Concluding Comment

The tone I have taken when discussing F tests, R2 and correlation has been dismissive. This is
deliberate, because they are grossly abused and over-used in current practice, especially by non-
statisticians, and I want you to be too proud (or too ashamed) to engage in those abuses. In a
better world, we’d just skip over them, but you will have to deal with colleagues, and bosses, who
learned their statistics in the bad old days, and so have to understand what they’re doing wrong.

In all fairness, the people who came up with these tools were great scientists, struggling with
very hard problems when nothing was clear; they were inventing all the tools and concepts we take
for granted in a class like this. Anyone in this class, me included, would be doing very well to come
up with one idea over the whole of our careers which is as good as R2. But we best respect our
ancestors, and the tradition they left us, when we improve that tradition where we can. Sometimes
that means throwing out the broken bits.
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