
Lecture 16: Polynomial and Categorical Regression

1 Review

We predict a scalar random variable Y as a linear function of p different predictor variables
X1, . . . Xp, plus noise:

Y = β0 + β1X1 + . . . βpXp + ε

and assume that E [ε|X] = 0, Var [ε|X] = σ2, with ε being uncorrelated across observations. In
matrix form,

Y = Xβ + ε

the design matrix X including an extra column of 1s to handle the intercept, and E [ε|X] = 0,
Var [ε|X] = σ2I.

If we add the Gaussian noise assumption, ε ∼ MVN(0, σ2I), independent of all the predictor
variables.

The least squares estimate of the coefficient vector, which is also the maximum likelihood
estimate if the noise is Gaussian, is

β̂ = (XTX)−1XTY

These are unbiased, with variance σ2(XTX)−1. Under the Gaussian noise assumption, β̂ itself has

a Gaussian distribution. The standard error ŝe
[
β̂j

]
= σ

√
(XTX)−1

jj . Fitted values are given by

Xβ̂ = HY, and residuals by e = (I−H)Y. Fitted values m̂ and residuals e are also unbiased and
have Gaussian distributions, with variance matrices σ2H and σ2(I−H), respectively.

The maximum likelihood estimator of σ2 is the in-sample mean-squared error, n−1(eTe) and
E
[
σ̂2
]

= σ2 n−q
n . Under the Gaussian noise assumption, nσ̂2/σ2 ∼ χ2

n−q. Also under the Gaussian
noise assumption, the Gaussian sampling distribution of any particular coefficient or conditional
mean can be converted into a t distribution, with n−q degrees of freedom, by using the appropriate
standard error, obtained by plugging in the de-biased estimate of σ2.

2 Adding Curvature: Polynomial Regression

If the relationship between Y ansd X is non-linear, we could try to capture that fact with a
polynomial. For example, we could use a model like

Y = β0 + β1X + β1X
2 + β1X

3 + ε.

The same is true if there are many covariates. For example, we could a model like

Y = β0 + β1X1 + β2X
2
1 + . . . βdX

d
1 + βd+1X2 + . . . βp+d−1Xp + ε

where instead of Y being linearly related to X1, it’s polynomially related, with the order of the
polynomial being d. We just add d − 1 columns to the design matrix X, containing x21, x

3
1, . . . x

d
1,

and treat them just as we would any other predictor variables. With this expanded design matrix,
it’s still true that β̂ = (XTX)−1XTY, that fitted values are HY (using the expanded X to get
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H), etc. The number of degrees of freedom for the residuals will be n − q where, in this case,
q = p+ 1 + (d− 1). Of course, there are many other such models we can fit. For example,

Y = β0 +

p∑
i=1

di∑
j=1

βi,jX
j
i + ε.

There are many mathematical and statistical points to make about polynomial regression, but let’s
take a look at how we’d actually estimate one of these models in R first.

2.1 R Practicalities

There are a couple of ways of doing polynomial regression in R.
The most basic is to manually add columns to the data frame with the desired powers, and

then include those extra columns in the regression formula.

xsq = x*x

out = lm(y ~ x + xsq)

A second method is:

out = lm(y ~ x + I(x^2))

The function I() is the identity function, which tells R “leave this alone”. We use it here
because the usual symbol for raising to a power, ^, has a special meaning in linear-model formulas,
relating to interactions.

The third method is:

out = lm(y ~ poly(x,2))

which tells R to use a second order polynomial.

2.2 Example

Look at the data in Figure 1. The first fit is linear. It does not look good. Then I tried a cubic
polynomial fit which works much better.

Here is the code.

> pdf("example.pdf")

> par(mfrow=c(2,2))

>

> ### linear regression

> out = lm(y ~ x)

> summary(out)

Coefficients:
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Figure 1: Top left: data and fitted line. Top right: residuals. Bottom left: a cubic polynomial fit. Bottom
right: residuals.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.6823 0.1124 23.86 <2e-16 ***

x 4.1847 0.1981 21.12 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.124 on 98 degrees of freedom

Multiple R-squared: 0.8199,Adjusted R-squared: 0.8181

F-statistic: 446.3 on 1 and 98 DF, p-value: < 2.2e-16

> plot(x,y)

> abline(out)

> plot(x,resid(out))

> abline(h=0)

>

> ### cubic regression

> out = lm(y ~ poly(x,3))

> summary(out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.63305 0.02976 88.48 <2e-16 ***

poly(x, 3)1 23.73862 0.29759 79.77 <2e-16 ***

poly(x, 3)2 7.22625 0.29759 24.28 <2e-16 ***

poly(x, 3)3 7.93886 0.29759 26.68 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2976 on 96 degrees of freedom

Multiple R-squared: 0.9876,Adjusted R-squared: 0.9872

F-statistic: 2555 on 3 and 96 DF, p-value: < 2.2e-16

> plot(x,y)

> points(x,fitted(out),col="blue")

> plot(x,resid(out))

> abline(h=0)

>

> dev.off()

2.3 Another Example

Suppose we use the mobility data. Now we fit the model:

out = lm(Mobility ~ Commute + poly(Latitude,2) + Longitude,data=mobility)
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The output looks like this:

summary(out)

##

## Call:

## lm(formula = Mobility ~ Commute + poly(Latitude, 2) + Longitude,

## data = mobility)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.12828 -0.02384 -0.00691 0.01722 0.32190

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0261223 0.0121233 -2.155 0.0315

## Commute 0.1898429 0.0137167 13.840 < 2e-16

## poly(Latitude, 2)1 0.1209235 0.0475524 2.543 0.0112

## poly(Latitude, 2)2 -0.2596006 0.0484131 -5.362 1.11e-07

## Longitude -0.0004245 0.0001394 -3.046 0.0024

##

## Residual standard error: 0.04148 on 724 degrees of freedom

## Multiple R-squared: 0.3828,Adjusted R-squared: 0.3794

## F-statistic: 112.3 on 4 and 724 DF, p-value: < 2.2e-16

We can use predict as usual:

new = data.frame(Commute = 0.298,Latitude = 40.57, Longitude = -79.58)

predict(out, newdata = new)

## 0.07079416

2.4 Which Polynomial?

Smoothness. Polynomial functions vary continuously in all their arguments. In fact, they are
“smooth” in the sense in which mathematicians use that word, meaning that all their derivatives
exist and are continuous, too. This is desirable if you think the real regression function you’re trying
to model is smooth, but not if you think there are sharp thresholds or jumps. Polynomials can
approximate thresholds arbitrarily closely, but you end up needing a very high order polynomial.

Over-fitting and wiggliness. A polynomial of degree d can exactly fit any d points. (Any two
points lie on a line, any three on a parabola, etc.) Using a high-order polynomial, or even summing
a large number of low-order polynomials, can therefore lead to curves which come very close to the
data we used to estimate them, but predict very badly. In particular, high-order polynomials can
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display very wild oscillations in between the data points. Plotting the function in between the data
points (using predict) is a good way of noting this. We will also look at more formal checks when
we cover cross-validation later in the course.

Picking the polynomial order. The best way to pick the polynomial order is on the basis of
some actual scientific theory which says that the relationship between Y and Xi should, indeed, by
a polynomial of order di. Failing that, carefully examining the diagnostic plots is your next best
bet. Finally, the methods we’ll talk about for variable and model selection in forthcoming lectures
can also be applied to picking the order of a polynomial, though as we will see, you need to be very
careful about what those methods actually do, and whether that’s really what you want.

2.5 Orthogonal Polynomials

There are actually many different polynomials that you can use. Suppose that x ∈ [−1, 1]. Here
are some polynomials:

f0(x) = 1, f1(x) = x, f2(x) = x2, f3(x) = x3, . . .

But here is another set of polynomials:

g0(x) = 1, g1(x) = x, g2(x) =
1

2
(3x2 − 1), g3(x) =

1

2
(5x3x), . . .

The latter polynomials are called Legendre polynomials. These polynomials are orthogonal, mean-
ing that ∫ 1

−1
gj(x)gk(x)dx = 0

of j 6= k. The advantage of using orthogonal polynomials is that the least squares calculations
are more stable and the standard errors of the coefficients are smaller. However, the final fitted
regression function will be the same whether you use one set of polynomials or another set. In fact,
the poly command in R is actually creating orthogonal polynomials for you.

2.6 Non-Polynomial Basis Functions

The polynomial functions form a basis. Any well-behaved function can be approximated by a linear
combination of polynomials. There are other smooth functons we can use besides polynomials. For
example, we can use sines and cosines:

d∑
j=1

γi1j sin (jωXi) + γi2j cos (jωXi).

In this course, we will mostly use polynomials.

3 Categorical Predictors

We often have variables which we think are related to Y which are not real numbers, but are
qualitative rather than quantitative — answers to “what kind?” rather than to “how much?”. For
people, these might be things like gender, race and occupation.
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Some of these are purely qualitative, coming in distinct types, but with no sort of order or rank-
ing implied; these are often specifically called “categorical”, and the distinct values “categories”.
(The values are also called “levels”, though that’s not a good metaphor without an order.) Other
have distinct levels which can be put in a sensible order, but there is no real sense that the distance
between one level and the next is the same — they are ordinal but not metric. When it is nec-
essary to distinguish non-ordinal categorical variables, they are often called nominal, to indicate
that their values have names but no order.

In R, categorical variables are represented by a special data type called factor, which has as a
sub-type for ordinal variables the data type ordered.

In this section, we’ll see how to include both categorical and ordinal variables in multiple linear
regression models, by coding them as numerical variables, which we know how to handle.

3.1 Binary Categories

The simplest case is that of a binary variable, one which comes in two qualitatively different types.
Suppose, for example, that X1 ∈ {0, 1}. We just include X1 in the regression as usual. This is
called an indicator variable or dummy variable. That is, we code the qualitative categories
as 0 and 1.

We then regress on the indicator variable, along with all of the others, getting the model

Y = β0 + β1X1 + . . . βpXp + ε.

The coefficient β1 is the expected difference in Y between two units which are identical, except
that one of them has X1 = 0 and the other has X1 = 1. That is, it’s the expected difference in the
response between members of the reference category and members of the other category, all else
being equal. For this reason, β1 is often called the contrast between the two classes.

In R. If a data frame has a column which is a two-valued factor already, and it’s included in
the right-hand side of the regression formula, lm handles creating the column of indicator variables
internally.

Here, for instance, we use a classic data set to regress the weight of a cat’s heart on its body
weight and its sex. (If it worked, such a model would be useful in gauging doses of veterinary heart
medicines.)

library(MASS)

data(cats)

out = lm(Hwt ~ Sex + Bwt,data=cats)

summary(out)

##

## Call:

## lm(formula = Hwt ~ Sex + Bwt, data = cats)

##

## Residuals:

## Min 1Q Median 3Q Max
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## -3.5833 -0.9700 -0.0948 1.0432 5.1016

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.4149 0.7273 -0.571 0.569

## SexM -0.0821 0.3040 -0.270 0.788

## Bwt 4.0758 0.2948 13.826 <2e-16

##

## Residual standard error: 1.457 on 141 degrees of freedom

## Multiple R-squared: 0.6468,Adjusted R-squared: 0.6418

## F-statistic: 129.1 on 2 and 141 DF, p-value: < 2.2e-16

Sex is coded as F and M, and R’s output indicates that it chose F as the reference category.

Diagnostics. The mean of the residuals within each category is guaranteed to be zero but they
should also have the same variance and otherwise the same distribution, so there is still some point
in plotting residuals against X1.

Inference. There is absolutely nothing special about the inferential statistics for the estimated
contrast β̂1. It works just like inference for any other regression coefficient.

Why not two columns? It’s natural to wonder why we have to pick out one level as the
reference, and estimate a contrast. Why not add two columns to X, one indicating each class? The
problem is that then those two columns will be linearly dependent (they’ll always add up to one),
so the data would be collinear and the model in-estimable.

Why not two slopes? The model we’ve specified has two parallel regression surfaces, with the
same slopes but different intercepts. We could also have a model with the same intercept across
categories, but different slopes for each variable. Geometrically, this would mean that the regression
surfaces weren’t parallel, but would meet at the origin (and elsewhere). We’ll see how to make that
work when we deal with interactions in a few lectures. If we wanted different slopes and intercepts,
we might as well just split the data.

3.2 Categorical Variables with More than Two Levels

Suppose our categorical variable has more than two levels, say k of them. We can handle it in
almost exactly the same way as the binary case. We pick one level — it really doesn’t matter which
— as the reference level. We then introduce k − 1 columns into the design matrix X, which are
indicators for the other categories. If, for instance, k = 3 and the classes are North, South, West,
we pick one level, say North, as the reference, and then add a column XSouth which is 1 for data
points in class South and 0 otherwise, and another column XWest which is 1 for data points in that
class and 0 otherwise.

Having added these columns to the design matrix, we regress as usual, and get k− 1 contrasts.
The over-all β0 is really the intercept for the reference class; the contrasts are added to β0 to get
the intercept for each class. Geometrically, we now have k parallel regression surfaces, one for each
level of the variable. Diagnostics and inference are the same as in the binary case.
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If you have a variable x in R and you want R to treat it as a factor, use this command:
x = as.factor(x)

Why not k columns? Because, just like in the binary case, that would make all those columns
for that variable sum to 1, causing problems with collinearity.

3.3 Two, Three, Many Categorical Predictors

Nothing in what we did above requires that there be only one categorical predictor; the other
variables in the model could be indicator variables for other categorical predictors. Nor do all the
categorical predictors have to have the same number of categories. The only wrinkle with having
multiple categories is that β0, the over-all intercept, is now the intercept for individuals where all
categorical variables are in their respective reference levels. Each combination of categories gets its
own regression surface, still parallel to each other.

With multiple categories, it is natural to want to look at interactions — to let their be an
intercept for left-handed little-endian plumber, rather than just adding up contrasts for being left-
handed and being a little-endian and being a plumber. We’ll look at that when we deal with
interactions.

3.4 Analysis of Variance: Only Categorical Predictors

A model in which there are only categorical predictors is, for historical reasons, often called an
analysis of variance model. Estimating such a model presents absolutely no special features
beyond what we have already covered. An “analysis of covariance” model is just a regression with
both qualitative and quantitative predictors.

3.5 Ordinal Variables

An ordinal variable is one where the qualitatively-distinct levels can be put in a sensible order, but
there’s no implication that the distance from one level to the next is constant. At our present level
of sophistication, we have basically two ways to handle them:

1. Ignoring the ordering and treat them like nominal categorical variables.

2. Ignoring the fact that they’re only ordinal, assign them numerical codes (say 1, 2, 3, . . . ) and
treat them like ordinary numerical variables.

The first procedure is unbiased, but can end up dealing with a lot of distinct coefficients. It
also has the drawback that if the relationship between Y and the categorical variable is monotone,
that may not be respected by the coefficients we estimate. The second procedure is very easy, but
usually without any substantive or logical basis. It implies that each step up in the ordinal variable
will predict exactly the same difference in Y , and why should that be the case? If, after treating an
ordinal variable like a nominal one, we get contrasts which are all (approximately) equally spaced,
we might then try the second approach.
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3.6 R Example

Let’s revisit the mobility data. Let’s add State to the model.

nlevels(mobility$State)

## [1] 51

levels(mobility$State)

## [1] "AK" "AL" "AR" "AZ" "CA" "CO" "CT" "DC" "DE" "FL" "GA" "HI" "IA" "ID"

## [15] "IL" "IN" "KS" "KY" "LA" "MA" "MD" "ME" "MI" "MN" "MO" "MS" "MT" "NC"

## [29] "ND" "NE" "NH" "NJ" "NM" "NV" "NY" "OH" "OK" "OR" "PA" "RI" "SC" "SD"

## [43] "TN" "TX" "UT" "VA" "VT" "WA" "WI" "WV" "WY"

There are 51 levels for State, as there should be, corresponding to the 50 states and the District
of Columbia.

Running a model with State and Commute as the predictors, we therefore expect to get 52
coefficients (1 intercept, 1 slope, and 51-1 = 50 contrasts). R will calculate contrasts from the first
level, which here is AK, or Alaska.

out = lm(Mobility ~ Commute + State, data=mobility)

coefficients(out)

## (Intercept) Commute StateAL StateAR StateAZ StateCA

## 0.018400 0.126000 -0.005600 0.001840 0.007290 0.031500

## StateCO StateCT StateDC StateDE StateFL StateGA

## 0.044100 0.021500 0.071300 0.007460 0.004160 -0.022000

## StateHI StateIA StateID StateIL StateIN StateKS

## 0.029100 0.052200 0.029700 0.013200 0.010000 0.042400

## StateKY StateLA StateMA StateMD StateME StateMI

## 0.011900 0.021100 0.001230 0.018700 0.004710 0.005230

## StateMN StateMO StateMS StateMT StateNC StateND

## 0.055300 0.011900 -0.018700 0.045200 -0.011400 0.146000

## StateNE StateNH StateNJ StateNM StateNV StateNY

## 0.060400 0.032200 0.062700 0.006670 0.045400 0.022300

## StateOH StateOK StateOR StatePA StateRI StateSC

## -0.000559 0.036000 0.013800 0.035000 0.022400 -0.019300

## StateSD StateTN StateTX StateUT StateVA StateVT

## 0.042300 0.000761 0.032200 0.060500 0.014100 0.017300

## StateWA StateWI StateWV StateWY

## 0.025800 0.031700 0.057800 0.061200

When the categorical variable has so many levels you might want to simplify the variable. For
example, you could replace State with a simple variable with a new variable that takes two values:
North and South. This leads to something called a bias-variance tradeoff that we will discuss later.
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