
Lecture 18: Tests and Confidence Sets for Multiple Coefficients

Throughout, we’ll assume that the Gaussian-noise multiple linear regression model

Y = β0 + β1X1 + . . .+ βpXp + ε (1)

with ε ∼ N(0, σ2) independent of the Xis and independent across observations, is completely
correct. We will also use the least squares or maximum likelihood estimates of the slopes,

β̂ = (XTX)−1XTY. (2)

Under these assumptions, the estimator has a multivariate Gaussian distribution,

β̂ ∼MVN(β, σ2(XTX)−1). (3)

The maximum likelihood estimate of σ2, σ̂2, is by

σ̂2 =
1

n
(Y −Xβ̂)T (Y −Xβ̂). (4)

This is slightly negatively biased, E
[
σ̂2
]

= n−q
n σ2, (where q = p + 1) and has the sampling distri-

bution
nσ̂2

σ2
∼ χ2

n−q. (5)

σ̂2 n
n−q is an unbiased estimator of σ2.

1 Tests for Single Coefficients

Recall that

ŝej =
√
σ̂2(XTX)−1j+1,j+1 (6)

and that, if we use the unbiased estimate of σ2 then

β̂j − βj
ŝe
[
β̂j

] ∼ tn−q ≈ N(0, 1). (7)

The 1− α confidence interval is

β̂j ± tn−q(α/2)ŝe
[
β̂q

]
≈ β̂j ± z(α/2)ŝe

[
β̂q

]
(8)

which can be obtained from the confint function, when applied to the output of lm.
Here is an example that shows that testing if a coefficient is 0 is not the same as testing if that

covariate is important. Suppose that the true model is

Y = β0 + β1X1 + β2X2 + ε (9)

with all the usual assumptions being met. Suppose we did not know about X2. So we fit the model

Y = γ0 + γ1X1 + η. (10)
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We know, from our study of the simple linear model, that the (optimal or population) value of γ1
is

γ1 =
Cov [X1, Y ]

Var [X1]
. (11)

Substituting in for Y ,

γ1 =
Cov [X1, β0 + β1X1 + β2X2 + ε]

Var [X1]
(12)

=
Cov [X1, β0] + Cov [X1, β1X1] + Cov [X1, β2X2] + Cov [X1, ε]

Var [X1]
(13)

=
0 + β1Cov [X1, X1] + β2Cov [X1, X2] + 0

Var [X1]
(14)

= β1 + β2
Cov [X1, X2]

Var [X1]
. (15)

Thus, even if β1 = 0, we can easily have γ1 6= 0, and vice versa. The value of a coefficient depends
on what other variables are included (or not included) ion the model.

2 F Tests for Multiple Coefficients Being Zero

Let S ⊂ {1, . . . , p}. Suppose we want to test of all the (βj : j ∈ S) are zero. Let s be the number
of variables in S. For example, if S = {1, 6, 17} then we are testing the null hypothesis that
β1 = β6 = β17 = 0.

To test this hypothesis, fit the full model (with all the variables) and the null model (with the
variables in S omitted). Let σ̂2full be thge estinmate of σ2 from the full model and let σ̂2null be thge
estinmate of σ2 from the null model. Note that σ̂2null ≥ σ̂2full. We can test the null by comparing
these variances.

Following reasoning exactly parallel to the way we got the F test for the simple linear regression
model,

nσ̂2full
σ2

∼ χ2
n−q (16)

while, under the null hypothesis,
n(σ̂2null − σ̂2full)

σ2
∼ χ2

s. (17)

Note that s is the difference of the dimensions of the two models. Under the null hypothesis we
have that

F =
(σ̂2null − σ̂2full)/s
σ̂2full/(n− q)

∼ Fs,n−q. (18)

We therefore reject the null hypothesis when

F > Fs,n−q(α). (19)

If we’re not testing all the coefficients at once, this is a partial F test. The proper interpretation
of this test is “Does letting the slopes for (Xj : j ∈ S) be non-zero reduce the MSE more than we
would expect just by noise?”
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Cautions. The F-test does not test any of the following:

• Whether some variable not among X1, . . . Xp ought to be included in the model.

• Whether the relationship between Y and the Xi is linear.

• Whether the Gaussian noise assumption holds.

• Whether any of the other modeling assumptions hold.

2.1 All Slopes at Once

An obvious special case is the hypothesis that all the coefficients are zero. That is, the null
hypothesis is

Y = β0 + 0X1 + . . .+ 0Xp + ε (20)

with the alternative being the full model

Y = β0 + β1X1 + . . .+ βpXp + ε (21)

The estimate of σ2 under the null is the sample variance of Y , s2Y , so the test statistic becomes

(s2Y − σ̂2full)/p
σ̂2full/(n− q)

(22)

whose distribution under the null is Fp,n−q.
This full F test is often called a test of the significance of the whole regression. This is true,

but has to be understood in a very specific sense. We are testing whether, if Y is linearly regressed
on X1, . . . Xp and only on those variables, the reduction in the MSE from actually estimating slopes
over just using a flat regression surface is bigger than we’d expect from pure noise. Once again,
the test has no power to detect violations of any of the modeling assumptions.

2.2 F-Tests in R

This is most easily done through the anova function. We fit the null model and the full model,
both with lm, and then pass them to the anova function:

out.full = lm(Mobility ~ Commute + Latitude + longitude,data=mobility)

out.null = lm(Mobility ~ Commute,data=mobility)

anova(out.null,out.full)

## Analysis of Variance Table

##

## Model 1: Mobility ~ Commute

## Model 2: Mobility ~ Commute + Latitude + Longitude

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 727 1.3143

## 2 725 1.2952 2 0.019111 5.3491 0.004942

3



The second row tells us that the full model has two more parameters than the null, that
n(σ̂2null− σ̂2full) = 0.0191114, and then what the variance ratio or F statistic and the corresponding
p-value are. Here, we learn that the decrease in the root-MSE which comes from adding latitude
and longitude as predictors, while very small (0.51 percentage points) is large enough that it is
unlikely to have arisen by capitalizing on noise, assuming all the model assumptions are correct.

2.3 Variable Deletion via F Tests

It’s not uncommon to use F tests for variable deletion: pick your least favorite set of predictors,
test whether all of their βs are zero, and, if so, delete them from the model (and re-estimate).
Presuming that we can trust the modeling assumptions, there are still a few points about this
procedure which are slightly dubious, or at least call for much more caution than is often exercised.

Statistical power. The test controls the probability of rejecting when the null is true — it
guarantees that if βq = 0, we have a low probability of rejecting that null hypothesis. For deletion
to be reliable, however, we’d want a low probability of missing variables with non-zero coefficients,
i.e., a low probability of retaining the null hypothesis when it’s wrong, or high power to detect
departures from the null. Power cannot be read off from the p-value, and grows with the magnitude
of the departure from the null. One way to get at this is, as usual, to complement the hypothesis
test with a confidence set for the coefficients in question. Ignoring variables whose coefficients are
precisely estimated to be close to zero is much more sensible than ignoring variables because their
coefficients can only be estimated very loosely.

Non-transivitiy. The variance ratio test checks whether the MSE of the smaller model is sig-
nificantly or detectably worse than the MSE of the full model. One drawback to this is that a
series of insignificant, undetectably-small steps can add up to a significant, detectably-big change.
In mathematical jargon: “is equal to” is a transitive relation, so that if A = B and B = C, A = C.
But “insignificantly different from” is not a transitive relation, so if A ≈ B and B ≈ C, we can’t
conclude A ≈ C.

Concretely: a group of variables might show up as significant in a partial F test, even though
none of them was individually significant on a t test in the full model. Also, if we delete variables
in stages, we can have a situation where at each stage the increase in MSE is insignificant, but the
difference between the full model and the final model is highly significant.

3 Confidence Sets

Suppose we want to do inference on two coefficients, say βi and βj , at once. That means we need

to come up with a two-dimensional confidence region C, where we can say that P
(

(βi, βj) ∈ C
)

=

1− α.

3.1 Confidence Boxes or Rectangles

Suppose that Ci is a 1− α confidence interval for βi and that Cj is a 1− α confidence interval for
βj . We might guess that the rectangle R = Ci ×Cj is a 1− α confidence set for (βi, βj) but this is
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not correct. To see this, note that

P ((βi, βj) /∈ R) = P (βi /∈ R or βj /∈ R)

= P (βi /∈ R) + P (βj /∈ R)− P ((βi /∈ R) and βj /∈ R)

= 2α− P ((βi /∈ R) and βj /∈ R) ≤ 2α.

We can get the correct coverage by using the Bonferroni correction. Suppose we want a con-
fidence rectangle for (βj : j ∈ S). Let s be the number of elements in S. Let Cj be a confidence
interval for βj at level 1− (α/s). Now define the rectangle

C =
⊗
j∈S

Cj .

Recall the fact that, for any events A1, . . . , Am we laywa have P (A1
⋃
· · ·
⋃
Am) ≤

∑
j P (Aj). Let

Aj = “βj is not contained in Cj .” Then

P (βj /∈ C for some j ∈ S) = P (A1

⋃
· · ·
⋃
As) ≤

∑
j

P (βj /∈ Cj)

=
∑
j

α

s
= α.

This trick to building a 1−α confidence box for s parameters at once is to use 1−α/s confidence
intervals for each parameter.

3.2 Confidence Ellipsoids

An alternative to confidence boxes is to try to make confidence ellipsoid. Let βS be the subset of
coefficients we are interested in. Let ΣS = Var(β̂S). Then

(β̂S − βS)TΣ−1S (β̂S − βS) ∼ χ2
s

where s is the length of βS . The reason why this has a χ2
s distribution is explained in Section 3.2.2.

Let cα be such that P (χ2
s > cα) = α. Then

C =
{
βS : (β̂S − βS)TΣ−1S (β̂S − βS) ≤ cα

}
is a 1− α confidence ellipsoid for βS .

Of course, we need to estimate ΣS . Let Σ̂S be the corresponding sub-matrix of σ̂2(XTX)−1

using the unbiased estimate of σ2. Then we use

C =
{
βS : (β̂S − βS)T Σ̂−1S (β̂S − βS) ≤ cα

}
where, now, cα satisfies P (Fs,n−q > cα) = α.
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3.2.1 Confidence Ellipsoids in R

The package ellipse contains functions for plotting 2D confidence ellipses. The main function is
also called ellipse, which happens to have a specialized method for lm models. The usage is

out = lm(y ~ x1 + x2 + x3)

plot(ellipse(out,which=c(1,2),level=0.95))

Here which is the vector of coefficient indices (it can only be of length 2) and level is the
confidence level. Notice that what ellipse actually returns is a two-column array of coordinates,
which can be plotted, or passed along to other graphics functions (like points or lines). See
Figure 1. The commands for the figure are:

library(ellipse)

par(mfrow=c(3,2))

a = 0.05/6

plot(ellipse(out,which=c(1,2),level=1-a,type="l")

plot(ellipse(out,which=c(1,3),level=1-a,type="l")

plot(ellipse(out,which=c(1,4),level=1-a,type="l")

plot(ellipse(out,which=c(2,3),level=1-a,type="l")

plot(ellipse(out,which=c(2,4),level=1-a,type="l")

plot(ellipse(out,which=c(3,4),level=1-a,type="l")

Three-dimensional confidence ellipsoids can be plotted with the rgl library. While confidence
ellipsoids exist in any number of dimensions, they can’t really be visualized when q > 3.

3.2.2 Where the χ2
s Comes From

Here we will explain why (β̂S −βS)TΣ−1S (β̂S −βS) ∼ χ2
s. We know that ΣS is a square, symmetric,

positive-definite matrix. Therefore it can be written as

ΣS = VUVT (23)

where U is the diagonal matrix of eigenvalues, and V is the matrix whose columns are the eigenvec-
tors; VT is its transpose, and VTV = I. Note that VT is the inverse of V. The square root matrix

is Σ
1/2
S = VU1/2VT , where U1/2 is the diagonal matrix with the square roots of the eigenvalues.

Note that Σ
1/2
S Σ

1/2
S = ΣS and Σ

−1/2
S = VU−1/2VT . So,

Var
[
Σ
−1/2
S (β̂S − βS)

]
= Σ

−1/2
S Var(β̂S − βS)(Σ

−1/2
S )T (24)

= VU−1/2VTVUVT (25)

= VU−1/2UU−1/2VT (26)

= VVT = I. (27)

So, β̂S−βS have unequal variances and are correlated with each other, Σ
−1/2
S (β̂S−βS) is a random

vector where each coordinate has variance 1 and is uncorrelated with the others. Since the initial
vector was Gaussian, this too is Gaussian, hence

Σ
−1/2
S (β̂S − βS) ∼MVN(0, I). (28)
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Figure 1: Confidence ellipses for every pair of coefficients in the model where economic mobility is regressed
on the prevalence of short commutes, latitude and longitude. (Remember the intercept is the first coefficient.)
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Therefore (
Σ
−1/2
S (β̂S − βS)

)T
Σ
−1/2
S (β̂S − βS) ∼ χ2

s (29)

since it’s a sum of s squared, independent N(0, 1) variables.
On the other hand,(

Σ
−1/2
S (β̂S − βS)

)T (
Σ
−1/2
S (β̂S − βS)

)
= (β̂S − βS)TΣ−1S (β̂S − βS).

Hence,
(β̂S − βS)TΣ−1S (β̂S − βS) ∼ χ2

s. (30)
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