Lecture 20: Outliers and Influential Points

An outlier is a point with a large residual. An influential point is a point that has a large
impact on the regression. Surprisingly, these are not the same thing. A point can be an outlier
without being influential. A point can be influential without being an outlier. A point can be both
or neither.

Figure [1] shows four famous datasets due to Frank Anscombe. If you run least squares on each
dataset you will get the same output:

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept)  3.0001 1.1247 2.667 0.02573 =*
X 0.5001 0.1179 4.241 0.00217 *x

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665,Adjusted R-squared: 0.6295
F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

The top left plot has no problems. The top right plot shows a non-linear pattern. The bottom
left plot has an an outlier. The bottom right plot has an influential point. Imagine what would
happen if we deleted the rightmost point. If you looked at residual plots, you would see problems
in the second and third case. But the resdual plot for the fourth example would look fine. You
can’t see influence in the usual residual plot.

1 Modified Residuals

Let e be the vector of residuals. Recall that
e=(I-H), Ele]=0, Var(e)=o*I-H).
Thus the standard error of e; is o+/1 — hy; where hy; = H;;. We then call

the standardized residual.

There is another type of residual t; which goes under various names: the jackknife resid-
ual, the cross-validated residual, externally studentized residual or studentized deleted
residual. Let 2(71) is the predicted value for the i data point when (X;,Y;) is omitted from the
data. Then ¢; is defined by

t= 20D (1)

Si

where s? is the estimated variance of Y; — ffi(,i). It can be shown that
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FIGURE 1: For data sets that have the same fitted line. Top left: no problems. Top right: a mon-linear
pattern. Bottom left: An outlier. Bottom right: an influential point.



8(2—1‘) is the estimated variance after omitting (X, Y;) is omitted from the data. The cool think is

that we can compute t; without ever having to actually delete the observation and re-fit the model.
Everything you have done so far with residuals can also be done with standardized or jackknife
residuals.

2 Influence

Recall that R
Y =HY

where H is the hat matrix. This means that each }//\; is a linear combination of elements of H. In
particular, H;; is the contribution of the it™™ data point to )7; For this reason we call h;; = H;; the
leverage.

To get a better idea of how influential the i*" data point is, we could ask: how much do the
fitted values change if we omit an observation? Let Y (=9 be the vector of fitted values when we
remove observation i. Then Cook’s distance is defined by

(Y - YENT (Y — YD)
(p+1)52

D; =

It turns out that there is a handy formula for computing D;, namely:

r2 hi;
D; = L “ )
<p+1>< —hi,->

This means that the influence of a point is determined by both its residual and its leverage. Often,
people interpret D; > 1 as an influential point.

The leave-one-out idea can also be applied to the coefficients. Write B\(*i) for the vector of
coefficients we get when we drop the i*® data point. One can show that

~—n 5 (XITX)"1XTe;
5():ﬁ_(12h~' ®)

Cook’s distance can actually be computed from this, since the change in the vector of fitted values

is x(B9 — B), so

(ﬁ(—z) - B)TXTX(ﬁ(_l) _ B) (4)
(p+1)o2 )

Sometimes, whole clusters of nearby points might be potential outliers. In such cases, removing
just one of them might change the model very little, while removing them all might change it a
great deal. Unfortunately there are (Z) = O(n"*) groups of k points you could consider deleting at
once, so while looking at all leave-one-out results is feasible, looking at all leave-two- or leave-ten-
out results is not.

D; =

3 Diagnostics in Practice

We have three ways of looking at whether points are outliers:

1. We can look at their leverage, which depends only on the value of the predictors.



2. We can look at their studentized residuals, either ordinary or cross-validated, which depend
on how far they are from the regression line.

3. We can look at their Cook’s statistics, which say how much removing each point shifts all the
fitted values; it depends on the product of leverage and residuals.

The model assumptions don’t put any limit on how big the leverage can get (just that it’s <1
at each point) or on how its distributed across the points (just that it’s got to add up to p + 1).
Having most of the leverage in a few super-inferential points doesn’t break the model, exactly, but
it should make us worry.

The model assumptions do say how the studentized residuals should be distributed. In partic-
ular, the cross-validated studentized residuals should follow a t distribution. This is something we
can test, either for specific points which we’re worried about (say because they showed up on our
diagnostic plots), or across all the points.

3.1 InR

Almost everything we've talked — leverages, studentized residuals, Cook’s statistics — can be
calculated using the influence function. However, there are more user-friendly functions which
call that in turn, and are probably better to use. Leverages come from the ‘hatvalues‘ function, or
from the ‘hat‘ component of what ‘influence‘ returns:

out = lm(Mobility ~ Commute,data=mobility)

hatvalues (out)

influence(out)$hat ### this is the same as the previous line
rstandard (out) ### standardized residuals

rstudent (out) ### jackknife residuals
cooks.distance(out) ### Cook's distance

Often the most useful thing to do with these is to plot them, and look at the most extreme
points. The standardized and studentized residuals can also be put into our usual diagnostic plots,
since they should average to zero and have constant variance when plotted against the fitted values
or the predictors.

par (mfrow=c(2,2))

n = nrow(mobility)

out = 1lm(Mobility ~ Commute,data=mobility)
plot(hatvalue(out) ,ylab="Leverage")
plot(rstandard(out) ,ylab="Standardized Residuals")
plot (rstudent (out),ylab="Cross-Validated Residuals")
abline(h=qt (0.025,df=n-2,col="red")
abline(h=qt(1-0.025,df=n-2,col="red")
plot(cooks.distance(out),ylab="Cook's Distance")

We can now look at exactly which points have the extreme values, say the 10 most extreme
residuals, or largest Cook’s statistics:
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FIGURE 2: Leverages, two sorts of standardized residuals, and Cook’s distance statistic for each point in a
basic linear model of economic mobility as a function of the fraction of workers with short commutes. The
horizontal line in the plot of leverages shows the average leverage. The lines in studentized residual plot
shows a 95% t-distribution sampling interval. Note the clustering of extreme residuals and leverage around
row 600, and another cluster of points with extreme residuals around row 400.



n = nrow(mobility)

out = Im(Mobility ~ Commute,data=mobility)

r = rstudent (out)

I = (1:n) [rank(-abs(r) <= 10)]  ## indices 10 largest residuals
mobility[I,]

## X Name  Mobility State Commute Longitude Latitude
## 374 375 Linton 0.29891303 ND 0.646 -100.16075 46.31258
## 376 378 Carrington 0.33333334 ND 0.656 -98.86684 47.59698
## 382 384 Bowman 0.46969697 ND 0.648 -103.42526 46.33993
## 383 385 Lemmon 0.35714287 ND 0.704 -102.42011 45.96558
## 385 388 Plentywood 0.31818181 MT 0.681 -104.65381 48.64743
## 388 391 Dickinson 0.32920793 ND 0.659 -102.61354 47.32696
## 390 393 Williston 0.33830845 ND 0.702 -103.33987 48.25441
## 418 422 Miller 0.31506848 SD  0.697 -99.27758 44.53313
## 420 424 Gettysburg 0.32653061 SD 0.729 -100.19547 45.05100
## 608 618 Nome 0.04678363 AK  0.928 -162.03012 64.47514

C = cooks.distance(out)
I = (1:n)[rank(-abs(C) <= 10)]  ## indices 10 largest Cook's distances
mobility[I,]

## X Name Mobility State Commute Longitude Latitude
## 376 378 Carrington 0.33333334 ND 0.656 -98.86684 47.59698
## 382 384 Bowman 0.46969697 ND 0.648 -103.42526 46.33993
## 383 385 Lemmon 0.35714287 ND 0.704 -102.42011 45.96558
## 388 391 Dickinson 0.32920793 ND 0.659 -102.61354 47.32696
## 390 393 Williston 0.33830845 ND 0.702 -103.33987 48.25441
## 418 422 Miller 0.31506848 SD  0.697 -99.27758 44.53313
## 420 424 Gettysburg 0.32653061 SD  0.729 -100.19547 45.05100
## 607 617 Kotzebue 0.06451613 AK  0.864 -159.43781 67.02818
## 608 618 Nome 0.04678363 AK  0.928 -162.03012 64.47514
## 614 624 Bethel 0.05186386 AK  0.909 -158.38213 61.37712
3.2 plot

We have not used the plot function on an 1m object yet. This is because most of what it gives us
is in fact related to residuals (Figure [3).

par (mfrow=c(2,2))
plot(out)

The first plot is of residuals versus fitted values, plus a smoothing line, with extreme residuals
marked by row number. The second is a Q-Q plot of the standardized residuals, again with
extremes marked by row number. The third shows the square root of the absolute standardized



residuals against fitted values (ideally, flat); the fourth plots standardized residuals against leverage,
with contour lines showing equal values of Cook’s distance. There are many options, described in
help(plot.lm).

4 Dealing With Outliers

There are essentially three things to do when we’re convinced there are outliers: delete them;
change the model; or change how we estimate.

4.1 Deletion

Deleting data points should never be done lightly, but it is sometimes the right thing to do.

The best case for removing a data point is when you have good reasons to think it’s just wrong
(and you have no way to fix it). Medical records which give a patient’s blood pressure as 0, or their
temperature as 200 degrees, are just impossible and have to be errorﬂ Those points aren’t giving
you useful information about the process you’re studying so getting rid of them makes sense.

The next best case is if you have good reasons to think that the data point isn’t wrong, exactly,
but belongs to a different phenomenon or population from the one you're studying. (You're trying
to see if a new drug helps cancer patients, but you discover the hospital has included some burn
patients and influenza cases as well.) Or the data point does belong to the right population, but
also somehow to another one which isn’t what you’re interested in right now. (All of the data is on
cancer patients, but some of them were also sick with the flu.) You should be careful about that
last, though. (After all, some proportion of future cancer patients are also going to have the flu.)

The next best scenario after that is that there’s nothing quite so definitely wrong about the
data point, but it just looks really weird compared to all the others. Here you are really making
a judgment call that either the data really are mistaken, or not from the right population, but
you can’t put your finger on a concrete reason why. The rules-of-thumb used to identify outliers,
like “Cook’s distance shouldn’t be too big”, or “Tukey’s rule” which flags any point more than 1.5
times the inter-quartile range above the third quartile, or below the first quartile. It is always more
satisfying, and more reliable, if investigating how the data were gathered lets you turn cases of this
sort into one of the two previous kinds.

The least good case for getting rid of data points which isn’t just bogus is that you've got a
model which almost works, and would work a lot better if you just get rid of a few stubborn points.
This is really a sub-case of the previous one, with added special pleading on behalf of your favorite
model. You are here basically trusting your model more than your data, so it had better be either
a really good model or really bad data.

4.2 Changing the Model

Outliers are points that break a pattern. This can be because the points are bad, or because we
made a bad guess about the pattern. Figure 4] shows data where the cloud of points on the right
are definite outliers for any linear model. But I drew those points following a quadratic model, and
they fall perfectly along it (as they should). Deleting them, in order to make a linear model work
better, would have been short-sighted at best.

!This is true whether the temperature is in degrees Fahrenheit, degrees centigrade, or kelvins.
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FIGURE 3: The basic plot function applied to our running example model.
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FIGURE 4: The points in the upper-right are outliers for any linear model fit through the main body of points,
but dominate the line because of their very high leverage; they’d be identified as outliers. But all points were
generated from a quadratic model.



The moral of Figure [4 is that data points can look like outliers because we're looking for the
wrong pattern. If when we find apparent outliers and we can’t convince ourselves that data is
erroneous or irrelevant, we should consider changing our model, before, or as well as, deleting
them.

4.3 Robust Linear Regression

A final alternative is to change how we estimate our model. Everything we’ve done has been based
on ordinary least-squares (OLS) estimation. Because the squared error grows very rapidly with
the error, OLS can be very strongly influenced by a few large residuals. We might, therefore, a
different method of estimating the parameters. Estimation techniques which are less influenced
by outliers in the residuals than OLS are called robust estimators, or (for regression models)
robust regression.

Usually robust estimation, like OLS, is based on minimizing a function of the form: function of
the errors:

- 1 <&
B = argmin — i — X;b). 5
gmin ;_1 p(y ) (5)

Different choices of p, the loss function, yield different estimators. p(u) = |u| is least absolute
deviation (LAD) estimation. Using p(u) = u? corresponds to OLS. A popular compromise is to
use Huber’s loss function ) ul
U ul <c
) ={ oy 2 ©

2clu| — & |ul > e

Notice that Huber’s loss looks like squared error for small errors, but like absolute error for large
errors. Huber’s loss is designed to be continuous at ¢, and have a continuous first derivative there
as well (which helps with optimization). We need to pick the scale ¢ at which it switches over from
acting like squared error to acting like absolute error; this is usually done using a robust estimate
of the noise standard deviation o.

Robust estimation with Huber’s loss can be conveniently done with the rlm function in the
MASS package, which, as the name suggests, is designed to work very much like 1m.

library (MASS)
out = rlm(Mobility ~ Commute,data=mobility)
summary (out)

##
## Call: rim(formula = Mobility ~ Commute, data = mobility)
## Residuals:

## Min 1Q Median 3Q Max
## -0.148719 -0.019461 -0.002341 0.021093 0.332347
##

## Coefficients:

## Value Std. Error t value

## (Intercept) 0.0028 0.0043 0.6398

## Commute 0.2077 0.0091 22.7939

##

## Residual standard error: 0.0293 on 727 degrees of freedom
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Robust linear regression is designed for the situation where it’s still true that Y = X3 + ¢, but
the noise € is not very close to Gaussian, and indeed is sometimes “contaminated” by wildly larger
values. It does nothing to deal with non-linearity, or correlated noise, or even some points having
excessive leverage because we're insisting on a linear model.
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