
Lecture 21: Model Selection

1 Choosing Models

Sometimes we need to choose from two or more possible models. For example, we might want to
consider these two models:

Y = β0 + β1X1 + β2X2 + ε

and
Y = β0 + β1X1 + β2X2 + β3X1X2 + β4X

2
1 + β5X

2
2 + ε.

How do we decide which model to choose?
We can’t just use the MSE. The second model is guaranteed to have a smaller MSE. (Do you

see why?) We really want to use the model that will predict future observations well. That is, we
want the model with the smallest generalization error.

2 Generalization and Optimism

We estimated our model by minimizing the mean squared error — or training error — on our data.
In other words, β̂ was chosen to minimize

1

n
(Y −Xb)T (Y −Xb).

Let
m̂(x) = β̂0 + β̂1x1 + · · ·+ β̂1xp

be our fitted model. How well will m̂ predict in the future? We define the Generalization Error
or Prediction error as follows. Imagine a new data point (X,Y) where X = (X1, . . . , Xp). Our
prediction of Y using our model is m̂(X). The Generalization Error or Prediction error is

G = E[(Y − m̂(X))2]. (1)

Recall that the MSE or training error is

T =
1

n

n∑
i=1

(Yi − m̂(Xi))
2. (2)

In general, T is a poor estimate of G. In fact, we usually have that T < G.
For choosing models, we should use G instead of T . But to do this, we need a way to estimate

G. Before we explain how to estimate G, let’s first try to understand why the training error
underestimates the generalization error.

3 Why is the Training Error Smaller than the Generalization Er-
ror?

The generalization error measures how well we can predict a future observation. An easier task is
to predict new data at the same values of Xi as our traning data. We will show that even for this
easier task, the training error is a poor estimate of generalization error.

1

Our original data were generated from the model

Y = Xβ + ε.

From these data we constructed our estimator β̂. Our fitted model is m̂(x) = β̂0 +
∑

j β̂jXj . The

fitted values are Ŷi = m̂(Xi). The training error — also called the in-sample error — is

1

n

n∑
i=1

(Yi − Ŷi)2.

Now imagine that we got a new data set at the same Xi’s but with new errors:

Y′ = Xβ + ε′

where ε and ε′ are independent but identically distributed. The design matrix is the same, the true
parameters β are the same, but the noise is different. How well can we predict these new Y ′i s? The

predicted values using our model are still Ŷi = m̂(Xi). Define the out-of-sample prediction error by

1

n

n∑
i=1

(Y ′i − Ŷi)2.

We will show that

E

[
1

n

n∑
i=1

(Yi − Ŷi)2
]
< E

[
1

n

n∑
i=1

(Y ′i − Ŷi)2
]
. (3)

In fact, we will prove that

E

[
1

n

n∑
i=1

(Y ′i − Ŷi)2
]

= E

[
1

n

n∑
i=1

(Yi − Ŷi)2
]

+
2

n
σ2(p+ 1). (4)

Notice that Ŷi is a function of of all the Y ′i s so these are dependent random variables. On the

other hand, Ŷi and Y ′i are completely statistically independent. (Remember that we’re holding X
fixed.)

Now

E
[
(Yi − Ŷi)2

]
= Var

[
Yi − Ŷi

]
+
(
E
[
Yi − Ŷi

])2
(5)

= Var [Yi] + Var
[
Ŷi

]
− 2Cov

[
Yi, Ŷi

]
+
(
E [Yi]− E

[
Ŷi

])2
. (6)

On the other hand,

E
[
(Y ′i − Ŷi)2

]
= Var

[
Y ′i − Ŷi

]
+
(
E
[
Y ′i − Ŷi

])2
(7)

= Var
[
Y ′i
]

+ Var
[
Ŷi

]
− 2Cov

[
Y ′i , Ŷi

]
+
(
E
[
Y ′i
]
− E

[
Ŷi

])2
. (8)

Now Y ′i is independent of Yi, but has the same distribution. This tells us that E [Y ′i] = E [Yi],

Var [Y ′i] = Var [Yi], but Cov
[
Y ′i , Ŷi

]
= 0. So

E
[
(Y ′i − Ŷi)2

]
= Var [Yi] + Var

[
Ŷi

]
+
(
E [Yi]− E

[
Ŷi

])2
(9)

= E
[
(Yi − Ŷi)2

]
+ 2Cov

[
Yi, Ŷi

]
. (10)

2

Averaging over data points,

E

[
1

n

n∑
i=1

(Y ′i − Ŷi)2
]

= E

[
1

n

n∑
i=1

(Yi − Ŷi)2
]

+
2

n

n∑
i=1

Cov
[
Yi, Ŷi

]
.

For a linear model, it can be shown that Cov
[
Yi, Ŷi

]
= σ2Hii. So,

E

[
1

n

n∑
i=1

(Y ′i − Ŷi)2
]

= E

[
1

n

n∑
i=1

(Yi − Ŷi)2
]

+
2

n
σ2 trH

and we know that with p predictors and one intercept, trH = p+ 1. Hence,

E

[
1

n

n∑
i=1

(Y ′i − Ŷi)2
]

= E

[
1

n

n∑
i=1

(Yi − Ŷi)2
]

+
2

n
σ2(p+ 1).

Thus we have proved (4).
The term (2/n)σ2(p + 1) is called the optimism of the model — the amount by which its

in-sample MSE systematically under-estimates its true expected squared error. Notice that the
optimism:

• Grows with σ2: more noise gives the model more opportunities to seem to fit well by capital-
izing on chance.

• Shrinks with n: at any fixed level of noise, more data makes it harder to pretend the fit is
better than it really is.

• Grows with p: every extra parameter is another control which can be adjusted to fit to the
noise.

Minimizing the in-sample MSE completely ignores the bias from optimism, so it is guaranteed
to pick models which are too large and predict poorly out of sample.

4 Cross-Validation

The best way to estimate generaliation error is cross-validation. There are two main flavors of
cross-validation: K-fold cross-validation and leave-one-out cross-validation. K-fold cross-validation
is better but leave-one-out cross-validation is faster.

4.1 K-fold Cross-Validation

K-fold cross-validation goes as follows.

• Randomly divide the data into K equally-sized parts, or “folds”. A common choice is K = 5
or K = 10.

• For each fold

– Temporarily hold out that fold, calling it the “testing set”.

3

– Call the other K − 1 folds, taken together, the “training set”.

– Estimate each model on the training set.

– Calculate the MSE of each model on the testing set.

• Average MSEs over folds.

We then pick the model with the lowest MSE, averaged across testing sets.
In other words, divide the data into K groups B1, . . . , BK . For j ∈ {1, . . . ,K}, estimate m̂

from the data {B1, . . . , Bj−1, Bj+1, . . . , BK}. Then let

Ĝj =
1

nj

∑
i∈Bj

(Yi − m̂(Xi))
2

where nj is the number of points in Bj . Finally, we estimate the generalization error by

Ĝ =
1

K

K∑
j=1

Ĝj .

4.2 Leave-one-out Cross-Validation (LOOCV)

Let Ŷ
(−i)
i be the predicted value when we leave out (Xi, Yi) from the dataset. The leave-one-out

cross-validation score (LOOCV) is

LOOCV =
1

n

n∑
i=1

(Yi − Ŷ (−i)
i)2.

Computing LOOCV sounds painful. Fortunately, there is a simple shortcut formula:

LOOCV =
1

n

n∑
i=1

(
Yi − Ŷi
1−Hii

)2

.

So computing LOOCV is fast.
It also interesting to note the following. We know that tr(H) = p+ 1. So the average value of

the H ′iis is γ ≡ (p+ 1)/n. If we approximate each Hii with γ we have

LOOCV ≈ 1

n

n∑
i=1

(
Yi − Ŷi
1− γ

)2

..

By doing a Taylor series we see that (1− γ)−2 ≈ 1 + 2γ. Hence,

LOOCV ≈ 1 + 2γ

n

n∑
i=1

(Yi − Ŷi)2 (11)

=
1

n

n∑
i=1

(Yi − Ŷi)2 + 2γ
1

n

n∑
i=1

(Yi − Ŷi)2 (12)

= training error +
2σ̂2

n
(p+ 1). (13)

4

5 Mallow’s Cp Statistic

The Mallows Cp statistic just substitutes in a feasible estimator of σ2 into the optimism. Usually
we take σ̂2 from the largest model we consider. This will be an unbiased estimator of σ2 if the real
model is smaller (contains a strict subset of the predictor variables), but not vice versa. That is,
for a linear model with p+ 1 coefficients fit by OLS,

Cp =
1

n

n∑
i=1

(Yi − Ŷi)2 +
2σ̂2

n
(p+ 1). (14)

Notice how similar this is to (13). The selection rule is to pick the model which minimizes Cp.
We can think of Cp as having two parts,

Cp = MSE + (penalty)

From one point of view, the penalty is just an estimate of the bias. From another point of view,
it’s a cost we’re imposing on models for having extra parameters. Every new parameter has got to
pay that cost by reducing the MSE by at least a certain amount; if it doesn’t, the extra parameter
isn’t worth it.

For comparing models, we really care about differences:

∆Cp = MSE1 −MSE2 +
2

n
σ̂2(p1 − p2) (15)

Alternate form of Cp. You will find many references which define Cp somewhat differently:

nMSE

σ̂2
− n+ 2p (16)

and say that the optimal value is close to p, not close to 0. To see that this selects exactly the same
models as the rule given above, take a difference between two models, with MSE’s MSE1,MSE2

and p1, p2 predictors. We get

n(MSE1 −MSE2)

σ̂2
+ 2(p1 − p2)

Dividing by n and multiplying by σ̂2 gives us back Eq. 15. There are reasons to assert that Eq.
16 should indeed be close to p for the right model (if the Gaussian noise assumption holds), but
Eq. 14 is a good estimate of the out-of-sample error, and a good model selection rule, much more
broadly.

6 R2 and Adjusted R2 (OPTIONAL)

Recall that

R2 = 1− MSE

s2Y

Picking a model by maximizing R2 is thus equivalent to picking a model by minimizing MSE. It is
therefore bad for exactly the same reasons that minimizing MSE across models is bad.

5

Recall that the adjusted R2 is

R2
adj = 1−

MSE n
n−p−1
s2Y

That is, it’s R2 with the unbiased estimator of σ2. Maximizing adjusted R2 therefore corresponds
to minimizing that unbiased estimator. What does that translate to?

MSE
n

n− p− 1
= MSE

1

1− (p+ 1)/n
(17)

≈ MSE

(
1 +

p+ 1

n

)
(18)

= MSE +MSE
p+ 1

n
(19)

where the approximation becomes exact as n → ∞ with p fixed. Even for the completely right
model, where MSE is a consistent estimator of σ̂2, the correction or penalty is only half as big as
we’ve seen it should be. Selecting models using adjusted R2 is not completely stupid, as maximizing
R2 is, but it is still not going to work very well.

7 Akaike Information Criterion (AIC)

The great Japanese statistician Hirotugu Akaike proposed a famous model selection rule which also
has the form of “in-sample performance plus penalty”. What has come to be called the Akaike
information criterion (AIC) is

AIC(S) ≡ LS − dim(S)

where LS is the log likelihood of the model S, evaluated at the maximum likelihood estimate, and
dim(S) is the dimension of S, the number of adjustable parameters it has. Akaike’s rule is to pick
the model which maximizes AIC.

The reason for this definition is that Akaike showed AIC/n is an unbiased estimate of the
expected log-probability the estimated parameters will give to a new data point which it hasn’t
seen before, if the model is right. This is the natural counterpart of expected squared error for
more general distributions than the Gaussian. IF we do specialize to linear-Gaussian models, then
we have

L = −n
2

(1 + log 2π)− n

2
logMSE

and the dimension of the model is p+ 2 (because σ2 is also an adjustable parameter). Notice that
−n

2 (1 + log 2π) doesn’t involve the parameters at all. If we compare AICs for two models, with
mean squared errors in-sample of MSE1 and MSE2, and one with p1 predictors and the other with
p2, the difference in AICs will be

∆AIC = −n
2

logMSE1 +
n

2
logMSE2 − (p1 − p2).

To relate this to Cp, let’s write MSE2 = MSE1 + ∆MSE. Then

∆AIC = −n
2

logMSE1 +
n

2
logMSE1

(
1 +

∆MSE

MSE1

)
− (p1 − p2) (20)

= −n
2

log

(
1 +

∆MSE

MSE1

)
− (p1 − p2). (21)

6

Now let’s suppose that model 1 is actually the correct model, so MSE1 = σ̂2, and that ∆MSE is
small compared to σ̂2, so

∆AIC ≈ −n
2

∆MSE

σ̂2
− (p1 − p2) (22)

−2σ̂2

n
∆AIC ≈ ∆MSE +

2

n
σ̂2(p1 − p2) = ∆Cp. (23)

So, if one of the models we’re looking at is actually the correct model, and the others aren’t too
different from it, picking by maximizing AIC will give the same answer as picking by minimizing
Cp.

Other Uses of AIC AIC can be applied whenever we have a likelihood. It is therefore used
for tasks like comparing models of probability distributions, or predictive models where the whole
distribution is important. Cp, by contrast, really only makes sense if we’re trying to do regression
and want to use squared error.

7.1 BIC

Another model selection criterion is BIC (Bayesian Information Criterion) developed by Schwarz.
The BIC for a model S is

BIC(S) = LS −
log n

2
dim(S).

This is a stronger penalty than AIC applies, and this has consequences:

As n → ∞, if the true model is among those BIC can select among, BIC will tend
to pick the true model.

Of course there are various conditions attached to this, some of them quite technical, but it’s
generally true for IID samples, for regression modeling, for many sorts of time series model, etc.
Unfortunately, the model selected by BIC will tend to predict less well than the one selected by
leave-one-out cross-validation or AIC.

8 Summary

Cross-validation, AIC and Cp all have the same goal: try to find a model that predicts well. They
tend to choose similar models. BIC is quite different and tends to choose smaller models. Cross-
validation is very general can be used in more settings than the others. There are theorems that
say that cross-validation is very effective at estimating generalization error. These theorems make
very few assumptions.

9 Inference after Selection

All of the inferential statistics we have done in earlier lectures presumed that our choice of model
was completely fixed, and not at all dependent on the data. If different data sets would lead us
to use different models, and our data are (partly) random, then which model we’re using is also

7

random. This leads to some extra uncertainty in, say, our estimate of the slope on X1, which is not
accounted for by our formulas for the sampling distributions, hypothesis tests, confidence sets, etc.

A very common response to this problem, among practitioners, is to ignore it, or at least hope
it doesn’t matter. This can be OK, if the data-generating distribution forces us to pick one model
with very high probability, or if all of the models we might pick are very similar to each other.
Otherwise, ignoring it leads to nonsense.

Here, for instance, I simulate 200 data points where the Y variable is a standard Gaussian, and
there are 100 independent predictor variables, all also standard Gaussians, independent of each
other and of Y :

n = 200

p = 100

y = rnorm(n)

x = matrix(rnorm(n*p),nrow=n)

df = data.frame(y=y,x)

mdl = lm(y~., data=df)

Of the 100 predictors, 5 have t-statistics which are significant at the 0.05 level or less. (The
expected number would be 5.) If we select the model using just those variables we get

##

Call:

lm(formula = y ~ ., data = df[, c(1, stars)])

##

Residuals:

Min 1Q Median 3Q Max

-2.53035 -0.75081 0.03042 0.58347 2.63677

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03084 0.07092 0.435 0.6641

X21 -0.13821 0.07432 -1.860 0.0644

X25 0.12472 0.06945 1.796 0.0741

X41 0.13696 0.07279 1.882 0.0614

X83 -0.03067 0.07239 -0.424 0.6722

X88 0.14585 0.07040 2.072 0.0396

##

Residual standard error: 0.9926 on 194 degrees of freedom

Multiple R-squared: 0.06209,Adjusted R-squared: 0.03792

F-statistic: 2.569 on 5 and 194 DF, p-value: 0.02818

Notice that final over-all F statistic: it’s testing whether including those variables fits better
than an intercept-only model, and saying it thinks it does, with a definitely significant p-value. This
is the case even though, by construction, the response is completely independent of all predictors.
This is not a fluke: if you re-run my simulation many times, your p-values in the full F test will not
be uniformly distributed (as they would be on all 100 predictors), but rather will have a distribution

8

strongly shifted over to the left. Similarly, if we looked at the confidence intervals, they would be
much too narrow.

These issues do not go away if the true model isn’t “everything is independent of everything
else”, but rather has some structure. Because we picked the model to predict well on this data,
if we then run hypothesis tests on that same data, they’ll be too likely to tell us everything is
significant, and our confidence intervals will be too narrow. Doing statistical inference on the same
data we used to select our model is just broken. It may not always be as spectacularly broken as
in my demo above, but it’s still broken.

There are three ways around this. One is to pretend the issue doesn’t exist; as I said, this
is popular, but it’s got nothing else to recommend it. Another, is to not do tests or confidence
intervals. The third approach, which is in many ways the simplest, is to use data splitting.

Data splitting is (for regression) a very simple procedure:

• Randomly divide your data set into two parts.

• Calculate your favorite model selection criterion for all your candidate models using only the
first part of the data. Pick one model as the winner.

• Re-estimate the winner, and calculate all your inferential statistics, using only the other half
of the data.

(Division into two equal halves is optional, but usual.)
Because the winning model is statistically independent of the second half of the data, the

confidence intervals, hypothesis tests, etc., can treat it as though that model were fixed a priori.
Since we’re only using n/2 data points to calculate confidence intervals (or whatever), they will be
somewhat wider than if we really had fixed the model in advance and used all n data points, but
that’s the price we pay for having to select a model based on data.

10 R Practicalities

You can get the LOOCV from R as follows:

out = lm(y ~ x)

LOOCV = mean(((y - fitted(out))/(1-hatvalues(out)))^2)

To get Cp I suggest you write your own function. To get AIC use glm instead out lm like this:

out = glm(y ~ x)

out$aic

To get K-fold cross-validation you can either write your own code (excellent idea!) or use the
boot package together with glm as follows:

library(boot)

out = glm(y ~ x,data = D)

cv.glm(D,out,K=5)$delta[1]

9

It looks pretty strange, but that will give you the value that you want. Here is an example.
We will generate data from a quadratic. We will then fit polynomials up to order 10. Then we will
plot the LOOCV and the K-fold cross-validation using K = 5.

library("boot")

generate the data

n = 100

x = runif(n)

y = 2 + x - 3*x^2 + rnorm(n,0,.1)

D = data.frame(x=x,y=y)

plot the data

pdf("PolynomialExample1.pdf")

plot(x,y)

dev.off()

pdf("PolynomialExample2.pdf")

LOOCV = rep(0,10)

KFoldCV = rep(0,10)

fit polynomials and get the cross-validation scores

for(j in 1:10){

out = glm(y ~ poly(x,j),data=D)

print(summary(out))

LOOCV[j] = mean(((y - fitted(out))/(1-hatvalues(out)))^2)

KFoldCV[j] = cv.glm(D,out,K=5)$delta[1]

}

plot them

plot(1:10,LOOCV,type="l",lwd=3)

lines(1:10,KFoldCV,lwd=3,col="blue")

dev.off()

11 History

Cross-validation goes back in statistics into the 1950s, if not earlier, but did not become formalized
as a tool until the 1970s, with the work of Stone (1974). It was adopted, along with many other
statistical ideas, by computer scientists during the period in the late 1980s–early 1990s when the
modern area of “machine learning” emerged from (parts of) earlier areas called “artificial intelli-
gence”, “pattern recognition”, “connectionism”, “neural networks”, or indeed “machine learning”.
Subsequently, many of the scientific descendants of the early machine learners forgot where their

10

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Figure 1: The data.

11

2 4 6 8 10

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

1:10

LO
O

C
V

Figure 2: LOOCV is in black. K-fold is in blue. The x-axis is the order of the polynomial.

12

ideas came from, to the point where many people now think cross-validation is something computer
science contributed to data analysis.

12 More on AIC (OPTIONAL)

Akaike had a truly brilliant argument for subtracting a penalty equal to the number of parameters
from the log-likelihood, which is too pretty not to at least sketch here.1

Generically, say that the parameter vector is θ, and its true value is θ∗. (For linear regression
with Gaussian noise, θ consists of all p + 1 coefficients plus σ2.) The length of this vector, which
is dim(S), is let’s say d. (For linear regression with Gaussian noise, d = p + 2.) The maximum
likelihood estimate is θ̂. We know that the derivative of the likelihood is zero at the MLE:

∇L(θ̂) = 0

Let’s do a Taylor series expansion of ∇L(θ) around the true parameter value θ∗:

∇L(θ) = ∇L(θ∗) + (θ − θ∗)∇∇L(θ∗)

Here ∇∇L(θ∗) is the d× d matrix of second partial derivatives of L, evaluated at θ∗. This is called
the Hessian, and would traditionally be written H, but that would lead to confusion with the hat
matrix, so I’ll call it K. Therefore the Taylor expansion for the gradient of the log-likelihood is

∇L(θ) = ∇L(θ∗) + (θ − θ∗)K

Applied to the MLE,
0 = ∇L(θ∗) + (θ̂ − θ∗)K

or
θ̂ = θ∗ −K−1∇L(θ∗)

What is the expected log-likelihood, on new data, of θ̂? Call this expected log-likelihood ` (using
a lower-case letter to indicate that it is non-random). Doing another Taylor series,

`(θ) ≈ `(θ∗) + (θ − θ∗)T∇`(θ∗) +
1

2
(θ − θ∗)T∇∇`(θ∗)(θ − θ∗)

However, it’s not hard to show that the expected log-likelihood is always2 maximized by the true
parameters, so ∇`(θ∗) = 0. (The same argument also shows E [∇L(θ∗)] = 0.) Call the Hessian in
this Taylor expansion k. (Again, notice the lower-case letter for a non-random quantity.) We have

`(θ) ≈ `(θ∗) +
1

2
(θ − θ∗)Tk(θ − θ∗)

Apply this to the MLE:

`(θ̂) ≈ `(θ∗) +
1

2
∇L(θ∗)K−1kK−1∇L(θ∗)

Taking expectations,

E
[
`(θ̂)

]
≈ `(θ∗) +

1

2
trK−1kK−1J

1Nonetheless, this subsection is optional.
2Except for quite weird models.

13

where Var [∇L(θ∗)] = J. For large n, K converges on k, so this simplifies to

E
[
`(θ̂)

]
≈ `(θ∗) +

1

2
trk−1J

This still leaves things in terms of `(θ∗), which of course we don’t know, but now we do another
Taylor expansion, this time of L around θ̂:

L(θ∗) ≈ L(θ̂) +
1

2
(θ∗ − θ̂)T∇∇L(θ̂)(θ∗ − θ̂)

so

L(θ∗) ≈ L(θ̂) +
1

2
(K−1∇L(θ∗))T∇∇L(θ̂)(K−1∇L(θ∗))

For large n, ∇∇L(θ̂)→ ∇∇L(θ∗)→ k. So, again taking expectations,

`(θ∗) ≈ E
[
L(θ̂
]

+
1

2
trk−1J

Putting these together,

E
[
`(θ̂)

]
≈ E

[
L(θ̂
]

+ trk−1J

An unbiased estimate is therefore
L(θ̂) + trk−1J

Finally, a fundamental result (the “Fisher identity”) says that for well-behaved models, if the
model is correct, then

Var [∇L(θ∗)] = −∇∇`(θ∗)

or J = −k. Hence, if the model is correct, our unbiased estimate is just

L(θ̂)− tr I

and of course tr I = d.
There, as you’ll notice, several steps where we’re making a bunch of approximations. Some of

these approximations (especially those involving the Taylor expansions) can be shown to be OK
asymptotically (i.e., as n → ∞) by more careful math. The last steps, however, where we invoke
the Fisher identity, are rather more dubious. (After all, all of the models we’re working with can
hardly contain the true distribution.) A somewhat more robust version of AIC is therefore to use
as the criterion

L(θ̂) + trKJ

14

	Choosing Models
	Generalization and Optimism
	Why is the Training Error Smaller than the Generalization Error?
	Cross-Validation
	K-fold Cross-Validation
	Leave-one-out Cross-Validation (LOOCV)

	Mallow's Cp Statistic
	R2 and Adjusted R2 (OPTIONAL)
	Akaike Information Criterion (AIC)
	BIC

	Summary
	Inference after Selection
	R Practicalities
	History
	More on AIC (OPTIONAL)

