
Lecture 22: Review for Exam 2

1 Basic Model Assumptions (without Gaussian Noise)

We model one continuous response variable Y , as a linear function of p numerical predictors, plus
noise:

Y = β0 + β1X1 + . . . βpXp + ε. (1)

Linearity is an assumption, which can be wrong. Further assumptions take the form of restrictions
on the noise:

E [ε|X] = 0, Var [ε|X] = σ2.

Moreover, we assume ε is uncorrelated across observations.
We convert this to matrix form:

Y = Xβ + ε (2)

Y is an n× 1 matrix of random variables; X is an n× (p+ 1) matrix, with an extra column of all
1s; ε is an n× 1 matrix. Beyond linearity, the assumptions translate to

E [ε|X] = 0, Var [ε|X] = σ2I. (3)

We don’t know β. If we guess it is b, we will make an n× 1 vector of predictions Xb and have
an n× 1 vector of errors Y −Xb. The mean squared error, as a function of b, is then

MSE(b) =
1

n
(Y −Xb)T (Y −Xb). (4)

2 Least Squares Estimation and Its Properties

The least squares estimate of the coefficients is the one which minimizes the MSE:

β̂ ≡ argmin
b

MSE(b). (5)

To find this, we need the derivatives:

∇bMSE =
2

n
(XTY −XTXb). (6)

We set the derivative to zero at the optimum:

1

n
XT

(
Y −Xβ̂

)
= 0. (7)

The term in parentheses is the vector of errors when we use the least-squares estimate. This is
the vector of residuals,

e ≡ Y −Xβ̂ (8)

so the have the normal, estimating or score equations,

1

n
XTe = 0. (9)
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We say “equations”, plural, because this is equivalent to the set of p+ 1 equations

1

n

n∑
i=1

ei = 0 (10)

1

n

n∑
i=1

eiXij = 0 (11)

(Many people omit the factor of 1/n.) This tells us that while e is an n-dimensional vector, it is
subject to p + 1 linear constraints, so it is confined to a linear subspace of dimension n − p − 1.
Thus n− p− 1 is the number of residual degrees of freedom.

The solution to the estimating equations is

β̂ = (XTX)−1XTY. (12)

This is one of the two most important equations in the whole subject. It says that the coefficients
are a linear function of the response vector Y.

The least squares estimate is a constant plus noise:

β̂ = (XTX)−1XTY (13)

= (XTX)−1XT (Xβ + ε) (14)

= (XTX)−1XTXβ + (XTX)−1XT ε (15)

= β + (XTX)−1XT ε. (16)

The least squares estimate is unbiased:

E
[
β̂
]

= β + (XTX)−1XTE [ε] = β. (17)

Its variance is
Var

[
β̂
]

= σ2(XTX)−1. (18)

Since the entries in XTX are usual proportional to n, it can be helpful to write this as

Var
[
β̂
]

=
σ2

n

(
1

n
XTX

)−1
. (19)

The variance of any one coefficient estimator is

Var
[
β̂i

]
=
σ2

n

(
1

n
XTX

)−1
i+1,i+1

. (20)

The vector of fitted means or conditional values is

Ŷ ≡ Xβ̂. (21)

This is more conveniently expressed in terms of the original matrices:

Ŷ = X(XTX)−1XTY = HY. (22)
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The fitted values are thus linear in Y: set the responses all to zero and all the fitted values will be
zero; double all the responses and all the fitted values will double.

The n× n hat matrix H ≡ X(XTX)−1XT , also called the influence, projection or prediction
matrix, controls the fitted values. It is a function of X alone, ignoring the response variable totally.
It is an n× n matrix with several important properties:

• It is symmetric, HT = H.

• It is idempotent, H2 = H.

• Its trace trH =
∑

iHii = p+ 1, the number of degrees of freedom for the fitted values.

The variance-covariance matrix of the fitted values is

Var
[
Ŷ
]

= Hσ2IHT = σ2H. (23)

To make a prediction at a new point, not in the data used for estimation, we take its predictor
coordinates and group them into a 1 × (p + 1) matrix Xnew (including the 1 for the intercept).
The point prediction for Y is then Xnewβ̂. The expected value is Xnewβ, and the variance is

Var
[
Xnewβ̂

]
= XnewVar

[
β̂
]
XT
new = σ2Xnew(XTX)−1XT

new.

The residuals are also linear in the response:

e ≡ Y − m̂ = (I−H)Y. (24)

The trace of I−H is n− p− 1. The variance-covariance matrix of the residuals is

Var [e] = σ2(I−H). (25)

The mean squared error (training error) is

MSE =
1

n

n∑
i=1

e2i =
1

n
eTe. (26)

Its expectation value is slightly below σ2:

E [MSE] = σ2
n− p− 1

n
. (27)

(This may be proved using the trace of I −H.) An unbiased estimate of σ2, which I will call σ̂2

throughout the rest of this, is

σ̂2 ≡MSE
n

n− p− 1
. (28)

The leverage of data point i is Hii. This has several interpretations:

1. Var
[
Ŷi

]
= σ2Hii; the leverage controls how much variance there is in the fitted value.

2. ∂Ŷi/∂Yi = Hii; the leverage says how much changing the response value for point i changes
the fitted value there.
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3. Cov
[
Ŷi, Yi

]
= σ2Hii; the leverage says how much covariance there is between the ith response

and the ith fitted value.

4. Var [ei] = σ2(1−Hii); the leverage controls how big the ith residual is.

The standardized residual is
ri =

ei

σ̂
√

1−Hii
. (29)

The only restriction we have to impose on the predictor variables Xi is that (XTX)−1 needs to
exist. This is equivalent to

• X is not collinear: none of its columns is a linear combination of other columns; which is
also equivalent to

• The eigenvalues of XTX are all > 0. (If there are zero eigenvalues, the corresponding eigen-
vectors indicate linearly-dependent combinations of predictor variables.)

Nearly-collinear predictor variables tend to lead to large variances for coefficient estimates, with
high levels of correlation among the estimates.

It is perfectly OK for one column of X to be a function of another, provided it is a nonlinear
function. Thus in polynomial regression we add extra columns for powers of one or more of the
predictor variables. (Any other nonlinear function is however also legitimate.) This complicates the
interpretation of coefficients as slopes, just as though we had done a transformation of a column.
Estimation and inference for the coefficients on these predictor variables goes exactly like estimation
and inference for any other coefficient.

One column of X could be a (nonlinear) function of two or more of the other columns; this
is how we represent interactions. Usually the interaction column is just a product of two other
columns, for a product or multiplicative interaction; this also complicates the interpretation of
coefficients as slopes. (See the notes on interactions.) Estimation and inference for the coefficients
on these predictor variables goes exactly like estimation and inference for any other coefficient.

We can include qualitative predictor variables with k discrete categories or levels by introducing
binary indicator variables for k − 1 of the levels, and adding them to X. The coefficients on these
indicators tell us about amounts that are added (or subtracted) to the response for every individual
who is a member of that category or level, compared to what would be predicted for an otherwise-
identical individual in the baseline category. Equivalently, every category gets its own intercept.
Estimation and inference for the coefficients on these predictor variables goes exactly like estimation
and inference for any other coefficient.

Interacting the indicator variables for categories with other variables gives coefficients which say
what amount is added to the slope used for each member of that category (compared to the slope
for members of the baseline level). Equivalently, each category gets its own slope. Estimation and
inference for the coefficients on these predictor variables goes exactly like estimation and inference
for any other coefficient.

Model selection for prediction aims at picking a model which will predict well on new data
drawn from the same distribution as the data we’ve seen. One way to estimate this out-of-sample
performance is to look at what the expected squared error would be on new data with the same X
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matrix, but a new, independent realization of Y. In the notes on model selection, we showed that

E
[

1

n
(Y′ − m̂)T (Y′ − m̂)

]
= E

[
1

n
(Y − m̂)T (Y − m̂)

]
+ 2

1

n

n∑
i=1

Cov [Yi, m̂i] (30)

= E
[

1

n
(Y − m̂)T (Y − m̂)

]
+

2

n
σ2 trH (31)

= E
[

1

n
(Y − m̂)T (Y − m̂)

]
+

2

n
σ2(p+ 1). (32)

Mallow’s Cp estimates this by

MSE +
2

n
σ̂2(p+ 1) (33)

using the σ̂2 from the largest, model being selected among (which includes all the other models as
special cases). An alternative is leave-one-out cross-validation, which amounts to

1

n

n∑
i=1

(
ei

1−Hii

)2

. (34)

We also considered K-fold cross-validation, AIC and BIC.

3 Gaussian Noise

The Gaussian noise assumption is added on to the other assumptions already made. It is that
εi ∼ N(0, σ2), independent of the predictor variables and all other εj . In other words, ε has a
multivariate Gaussian distribution,

ε ∼MVN(0, σ2I). (35)

Under this assumption, it follows that, since β̂ is a linear function of ε, it also has a multivariate
Gaussian distribution:

β̂ ∼MVN(β, σ2(XTX)−1) (36)

and
Ŷ ∼MVN(Xβ, σ2H). (37)

It follows from this that
β̂i ∼ N(βi, σ

2(XTX)−1i+1,i+1 (38)

and
Ŷi ∼ N(Xiβ, σ

2Hii). (39)

The sampling distribution of the estimated conditional mean at a new point Xnew is

N(Xnewβ, σ
2Xnew(XTX)−1XT

new).

The mean squared error follows a χ2 distribution:

nMSE

σ2
∼ χ2

n−p−1. (40)
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Moreover, the MSE is statistically independent of β̂. We may therefore define

ŝe
[
β̂i

]
= σ̂

√
(XTX)−1i+1,i+1 (41)

and
ŝe
[
Ŷi

]
= σ̂

√
Hii (42)

and get t distributions:

β̂i − βi
ŝe
[
β̂i

] ∼ tn−p−1 ≈ N(0, 1) (43)

and
Ŷi −m(Xi)

ŝe [m̂i]
∼ tn−p−1 ≈ N(0, 1). (44)

The Wald test for the hypothesis that βi = β∗i therefore forms the test statistic

β̂i − β∗i
ŝe
[
β̂i

] (45)

and rejects the hypothesis if it is too large (above or below zero) compared to the quantiles of a
tn−p−1 distribution. The summary function of R runs such a test of the hypothesis that βi = 0.
There is nothing magic or even especially important about testing for a 0 coefficient, and the same
test works for testing whether a slope = 42 (for example).

Important! The null hypothesis being test is

Y is a linear function of X1, . . . Xp, and of no other predictor variables, with inde-
pendent, constant-variance Gaussian noise, and the coefficient βi = 0 exactly.

and the alternative hypothesis is

Y is a linear function of X1, . . . Xp, and of no other predictor variables, with inde-
pendent, constant-variance Gaussian noise, and the coefficient βi 6= 0.

The Wald test does not test any of the model assumptions (it presumes them all), and it cannot say
whether in an absolutely sense Xi matters for Y ; adding or removing other predictors can change
whether the true βi = 0.

Warning! Retaining the null hypothesis βi = 0 can happen if either the parameter is precisely
estimated, and confidently known to be close to zero, or if it is im-precisely estimated, and might
as well be zero or something huge on either side. Saying “We can ignore this because we can be
quite sure it’s small” can make sense; saying “We can ignore this because we have no idea what it
is” is preposterous.

To test whether several coefficients (βj : j ∈ S) are all simultaneously zero, use an F test. The
null hypothesis is

H0 : βj = 0 for all j ∈ S

and the altermative is
H1 : βj 6= 0 for at least one j ∈ S.
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The F statistic is

Fstat =
(σ̂2null − σ̂2full)/s
σ̂2full/(n− p− 1)

(46)

where s is the number of elements in S. Under that null hypothesis,

Fstat ∼ Fs,n−p−1 (47)

If we are testing a subset of coefficients, we have a “partial” F test. A “full” F test sets s = p,
i.e., it tests the null hypothesis of an intercept-only model (with independent, constant-variance
Gaussian noise) against the alternative of the linear model on X1, . . . Xp (and only those variables,
with independent, constant-variance Gaussian noise). This is only of interest under very unusual
circumstances.

Once again, no F test is capable of checking any modeling assumptions. This is because both
the null hypothesis and the alternative hypothesis presume that the all of the modeling assumptions
are exactly correct.

A 1− α confidence interval for βi is

β̂i ± ŝe [βi] tn−p−1(α/2) ≈ β̂i ± ŝe [βi] zα/2. (48)

We saw how to create a confidence ellipsoid for several coefficients. These make a simultaneous
guarantee: all the parameters are trapped inside the confidence region with probabiluty 1 − α. A
simpler way to get a simultaneous confidence region for all p parameters is to use 1−α/p confidence
intervals for each one (“Bonferroni correction”). This gives a confidence hyper-rectangle.

A 1− α confidence interval for the regression function at a point is

m̂(Xi)± ŝe [m̂(Xi)] tn−p−1(α/2). (49)

Residuals. The cross-validated or studentized residuals are:

1. Temporarily hold out data point i

2. Re-estimate the coefficients to get β̂(−i) and σ̂(−i).

3. Make a prediction for Yi, namely, Ŷi(i) = m̂(−i)(Xi).

4. Calculate

ti =
Yi − Ŷi(i)

σ̂(−i) + ŝe
[
m̂

(−i)
i

] . (50)

This can be done without recourse to actually re-fitting the model:

ti = ri

√
n− p− 1

n− p− r2i
(51)

(Note that for large n, this is typically extremely close to ri.) Also,

ti ∼ tn−p−2 (52)

(The −2 is because we’re using n− 1 data points to estimate p+ 1 coefficients.)
Cook’s distance for point i is the sum of the (squared) changes to all the fitted values if i was

omitted; it is

Di =
1

p+ 1
e2i

Hii

(1−Hii)2
. (53)
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