
Lecture 27: Variable Selection

1 What Is Variable Selection?

“Variable selection” means selecting which variables to include in our model. This is useful if there
are many covariates. For example, if there are more covariates than data points, then we know
that XTX is singular so the least squares estimator is not well-defined.

More generally, there is a bias-variance tradeoff. Let m̂ denote our estimated model and let
m(x) = E[Y |X = x] be the true regression function. Let m(x) = E[m̂(x)]. If m̂ was unbiased then
m(x) = m(x). But, in general, we cannot assume this is true. First of all, the true model might
not be linear. But even if it was linear, we could still have bias because, when we select variables,
we might be omitting important variables.

In the following calculation, we treat X as random. The prediction error of a future observation
(X,Y) is

R ≡ E(Y − m̂(X))2 = E(Y −m(X) +m(X)−m(X) +m(X)− m̂(X))2

= τ2 +B2 + V

where

τ2 = E(Y −m(X))2

B2 = E[(m(X)−m(X))2]

V = E[(m̂(X)−m(X))2].

In this formula, we call τ2 the unavoidable error. (Predicting a random variable involves error even
if we knew the true function m(x).) B2 is the (squared) bias term and V is the variance.

Generally speaking: small models (with few covariates) have low variance and high bias. Large
models (with many covariates) have high variance and low bias. The challenge in variable selection
is to choose a model with small prediction error and this requires that we balance the bias and
variance.

2 Why Variable Selection Using p-Values Is a Bad Idea

When we assume the linear, constant-variance, independent-Gaussian-noise model is completely
correct, it is easy to test the hypothesis that any particular coefficient is zero. The (Wald) test
statistic is

t =
β̂i

ŝe
[
β̂i

]
and, under the null hypothesis that βi = 0, this has a tn−(p+1) distribution, therefore tending to a
z (standard-Gaussian) distribution as n→∞.

It is very, very tempting, and common, to use the p-values which come from this test to select
variables: significant variables get included, insignificant ones do not, ones with smaller p-values
(hence larger test statistics) are higher priorities to include than ones with smaller test statistics.

1

This pattern of reasoning shows up over and over again among users of regression, including, I am
ashamed to say, not a few statisticians.

The reasons why this is a bad idea were already gone over in lecture 15, so, again, I will be
brief. Let us think about what will tend to make the test statistic larger or smaller, by being more
explicit about the denominator:

β̂i
σ̂√

nV̂ar[Xi]

√
V IFi

where V̂ar [Xi] is the sample variance of the ith predictor variable, and V IFi is that variables
variance-inflation factor (see Lecture 17). What follows from this?

1. Larger coefficients will, all else being equal, have larger test statistics and be more significant
(β̂i in the numerator).

2. Reducing the noise around the regression line will increase all the test statistics, and make
every variable more significant (σ̂ in the denominator).

3. Increasing the sample size will increase all the test statistics, and make every variable more
significant (

√
n in the denominator).

4. More variance in a predictor variable will, all else being equal, increase the test statistic and
make the variable more significant (V̂ar [Xi] in the denominator).

5. More correlation between Xi and the other predictors will, all else being equal, decrease the
test statistic and make the variable less significant (V IFi in the denominator).

The test statistic, and thus the p-value, runs together an estimate of the actual size of the coefficient
with how well we can measure that particular coefficient. This is exactly the right thing to do if
our question is “Can we reliably detect that this coefficient isn’t exactly zero?” That is a very,
very different question from “Is this variable truly relevant to the response?”, or even from “Does
including this variable help us predict the response?” Utterly trivial variables can show up as
having highly significant coefficients, if the predictor has lots of variance and isn’t very correlated
with the other predictors. Very important (large-coefficient) variables can be insignificant, when
their coefficients can’t be measured precisely with our data. Every variable whose coefficient isn’t
exactly zero will eventually (as n → ∞) have an arbitrarily large test statistic, and an arbitrarily
small p-value.

None of this is even much help in answering the question “Which variables help us predict the
response?” F -tests on groups of coefficients don’t help either. t-tests on individual coefficients.

3 Cross-Validation

The solution is to use cross-validation as we discussed in Lecture 21. You could also use AIC or
Cp which are really just approximations to cross-validation. Remember that we had two versions
of cross-validation: K-fold, and leave-one-out.

Cross-validation provides us with an estimate of the prediction error

R = E(Y − m̂(X))2.

So our goal is consider any models and choose the one with the lowest estimated prediction error.

2

4 How Do We Fit All the Models?

Suppose there are p covariates. For each variable, we can decide to keep it in the model or
throw it away. This means that there are 2p possible models. In principle we could fit all 2p

such models, estimate the prediction error of each one and choose the best. This presents a
problem. There are too many models to consider. For example, if p = 100 then 2p is equal to
1,267,650,600,228,229,401,496,703,205,376. That’s a lot of models.

There are two common solutions. The first is to use forward stepwise regression (also known as
greedy regression) and the second is to use the lasso.

5 Standardization

Before we proceed, you should know that when doing variable selection it is common practice to
standardize the variables. This means that we take each covariate, subtract off its mean and divide
by its standard deviation. This makes sure we are comparing variables on a simialr scale. Usually,
we also replace Yi with Yi−Y . One consequence of this is that we no longer need an intercept term
in the model. The standardize a matrix, you can use the scale command in R. However, most of
the R programs for variable selection will automatically standardize the variables.

6 Forward Stepwise Regression

Forward stepwise regression works like this:

1. Start by fitting the simplest model Y = β0 + ε. Let S = ∅.

2. Next we consider all single variable models:

Y = β0 + β1X1 + ε, Y = β0 + β2X2 + ε, · · · .

We fit each of these and then choose the best one. “Best” means, lowest RSS or lowest
Cross-validation error, or lowest AIC etc. Add the best variable to S. For example, suppose
X17 was the best. Then S = {17} and our current estimated model is m̂(x) = β̂0 + β̂17X17.

3. Now consider adding another variable. So in this case we consider

Y = β0 + β1X1 + β17X17 + ε, Y = β0 + β2X2 + β17X17 + ε, · · · .

Choose the best one and add it to S. For example, if X5 was the best then S = {5, 17} and
our current model estumate is

m̂(x) = β̂0 + β̂5X5 + β̂17X17.

Note the the coefficients have changes. The estimate β̂17 you gte here will be differenr than
the estimate in the previous step, because we are now fitting a two-variable model.

4. Continue adding one variable at a time this way until you cannot add any more variables.

Each step of the process gives us a new model. We we have a set of models M1,M2, . . . ,.
Now we estimate the prediction error of each model and choose the best one.

3

6.1 Stepwise Regression R

There are several programs in R for stepwise regression.
The first is to use the step command. To use this, you have to start by fitting the smallest and

largest model.

small = lm(y ~ 1,data=D) ### fit intercept only

big = lm(y ~ .,data=D) ### fit all the variables

tmp = step(small,scope = list(lower=small,upper=big),direction="forward")

You should look carefully at help(step). Here is a very small example, with only three variables
so you can see what the outout looks like:

D = data.frame(y=y,x1=x1,x2=x2,x3=x3)

small = lm(y ~ 1,data=D)

big = lm(y ~ .,data=D)

tmp = step(small,scope = list(lower=small,upper=big),direction="forward")

Start: AIC=-1.23

y ~ 1

Df Sum of Sq RSS AIC

+ x1 1 2284.1 3925.9 371.02

+ x2 1 1775.5 4434.5 383.20

+ x3 1 1215.9 4994.1 395.08

<none> 6210.0 414.87

Step: AIC=371.02

y ~ x1

> small = lm(y ~ 1,data=D)

big = lm(y ~ .,data=D)

tmp = step(small,scope = list(lower=small,upper=big),direction="forward")

> Start: AIC=414.87

y ~ 1

Df Sum of Sq RSS AIC

+ x1 1 2284.1 3925.9 371.02

+ x2 1 1775.5 4434.5 383.20

+ x3 1 1215.9 4994.1 395.08

<none> 6210.0 414.87

Step: AIC=371.02

y ~ x1

Df Sum of Sq RSS AIC

4

+ x2 1 1971.6 1954.3 303.26

+ x3 1 1328.2 2597.8 331.72

<none> 3925.9 371.02

Step: AIC=303.26

y ~ x1 + x2

Df Sum of Sq RSS AIC

+ x3 1 1953.5 0.83 -470.67

<none> 1954.32 303.26

Step: AIC=-470.67

y ~ x1 + x2 + x3

The step command uses AIC. Is it the negative of the AIC we used so small values are good.
The search may stop early if there is no improvement in AIC.

I prefer to use the lars package. To use lars, you need to create a matrix with all your covariates.

library(lars)

out = lars(x,y,type="stepwise") ### x is my design matrix. y is my outcome.

tmp = cv.lars(x,y,K=10,type="stepwise",plot.it=FALSE) ##runs stepwise

m = length(tmp$cv)

plot(1:m,tmp$cv) ### plot the cross-validation scores

now add error bars to the plot

for(i in 1:m){

segments(i,tmp$cv[i]-tmp$cv.error[i],i,tmp$cv[i]+tmp$cv.error[i])

}

j = which.min(tmp$cv) ### which model minimizes cross-validation

print(j) ###

[1] 2

print the beta.hat vector for the best model

round(out$beta[j,],2)

[1] 3.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[16] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[31] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[46] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[61] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[76] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[91] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

we see the best model included x1 but no other variables

this command tells you at what step each variable was chosen

out$entry

[1] 1 0 0 0 39 20 0 44 47 0 32 25 6 0 28 29 0 48 0 22 0 26 0 45 4

[26] 0 0 0 5 0 0 0 3 30 31 35 10 11 0 0 8 38 17 0 36 42 43 0 46 33

5

[51] 34 13 37 16 0 0 0 9 0 7 0 23 0 0 0 0 40 0 12 27 0 41 0 0 0

[76] 0 0 0 0 0 0 2 49 0 19 0 0 14 0 15 0 21 0 0 0 0 0 18 24 0

See the plot in Figure 1.

7 The Lasso

A common (and more modern) approach is to use the lasso. We define β̂ as the vector that
minimizes

(Y −Xβ)T (Y −Xβ) + λ||β||1
where ||β||1 =

∑
j |βj |. This is like ridge regression except the penalty function is the L1 norm

instead of the L2 norm. It turns out that the estimator β̂ is sparse: many of the elements are 0.
This corresponds to eliminating these variables from the model. We can use K-fold cross-validaton
to choose λ.

7.1 Example

I suggest using the glmnet package.

library(glmnet)

out = glmnet(x,y) ### lasso fit

plot(out) ### plots the betas as lambda varies

cvfit = cv.glmnet(x,y) ### computes the cross-validation scores

plot(cvfit) ### nice plot of cv

cvfit$lambda.min ### best vaue

[1] 0.2455386

coef(cvfit,s="lambda.min") ### print the coefficients of the best model

(Intercept) -0.06889786

V1 .

V2 2.74342130

V3 .

V4 .

V5 2.93688741

V6 .

V7 .

.... there is more but I am not including here to save space

8 Inference after Selection, Again

If all you care about is prediction, you may not need to hypothesis tests or confidence intervals. But
if you want to use tests and confidence intervals, then there is a problem. The standard inferential

6

●

●
● ● ●

●
● ●

●
●

● ● ●
● ●

●
● ● ● ● ● ● ●

●

● ●

0 10 20 30 40

2
4

6
8

10
12

14

1:m

tm
p$

cv

Figure 1: The cross validation scores as forward stepwise adds variables.

7

0 2 4 6 8 10

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

L1 Norm

C
oe

ffi
ci

en
ts

0 2 2 8 29 39

Figure 2: The lasso path. Each curve is one β̂j as λ varies.

8

−3 −2 −1 0 1

5
10

15

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●

47 41 38 32 29 25 18 10 6 2 2 2 2 2 2 2 2 1

Figure 3: The cross validation scores as λ varies.

9

statistics (like the p-values on individual coefficients) are not valid if you do variable selection. The
easy cure is to split the data in half at random, and use one part to do model selection and the
other half to do inference for your selected model.

10

	What Is Variable Selection?
	Why Variable Selection Using p-Values Is a Bad Idea
	Cross-Validation
	How Do We Fit All the Models?
	Standardization
	Forward Stepwise Regression
	Stepwise Regression R

	The Lasso
	Example

	Inference after Selection, Again

