
LECTURE NOTES 10

1 Evaluating Estimators: Decision Theory

We have seen three methods to define esimators: the method of moments, maximum likeli-
hood and Bayes estimators. No we will intoduce decision theory which is a way to evaluate
how good an estimator is.

The basic idea is this. We observe data X1, . . . , Xn ∼ pθ. We construct an estimator
θ̂ = θ̂(X1, . . . , Xn). To evaluate θ̂ we introduce a loss function L(θ̂, θ). Some common loss
functions are:

1. Squared loss: L(θ̂, θ) = (θ̂ − θ)2.

2. Absolute loss: L(θ̂, θ) = |θ − θ|.

3. Kullback-Leibler loss: L(θ̂, θ) = KL(θ̂, θ) ≡
∫
pθ(u) log

(
pθ(u)
p
θ̂
(u)

)
du.

Next, we define the risk function:

R(θ, θ̂) = Eθ[L(θ̂, θ)] =

∫
L(θ̂, θ)pθ(x1)pθ(x2) · · · pθ(xn)dx1 · · · dxn.

The most commonly used loss function is L(θ̂, θ) = (θ̂−θ)2. The risk function R = E[(θ̂−θ)2]
is called the mean squared error, or MSE.

We want to choose an estimator θ̂ whose risk function is small. At this point, it is not
obvious how to compare risk functions.

Example: Suppose X ∼ N(θ, 1), and we care about estimating θ in MSE. Consider two

estimators: θ̂ = X and θ̂ = 0. The risk of X is: E(X − θ)2 = 1, while the risk of 0 is
Eθ2 = θ2. So when θ < 1, 0 is a better estimator than the estimator X. Neither estimator
dominates the other.

Example: Let us consider the Bernoulli estimation problem: two natural estimators are
the MLE:

p̂1 =
1

n

n∑
i=1

Xi,

and the Bayes estimator we defined previously:

p̂2 =

∑n
i=1Xi + α

n+ α + β
,
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for some values α and β that we will specify soon. Again, suppose we consider the squared
loss:

R(p, p̂1) =
p(1− p)

n
.

R(p, p̂2) = Var

(∑n
i=1Xi + α

n+ α + β

)
+

(
E
∑n

i=1Xi + α

n+ α + β
− p
)2

.

In the second estimator if we choose α = β =
√
n/4 we obtain that the risk is constant as a

function of p, i.e.

R(p, p̂2) =
n

4(n+
√
n)2

.

We can compare these two estimators’ risk functions but once again we see that neither
estimator dominates the other. In such cases, we need other ways to compare estimators
and to find “best” estimators.

There are two common ways to define a ‘best estimator.’

1. Minimax risk: The minimax estimator θ̂ is one that minimizes the maximum risk: the
minimax estimator θ̂ satisfies

sup
θ∈Θ

R(θ, θ̂) = inf
θ′

sup
θ∈Θ

R(θ, θ′)

where the infimum is over all estimators.

2. Bayes estimator: We called the mean of a posterior distribution, the Bayes estimator.
Now we intoduce a more general notion of Bayes estimator. Given a prior p define the Bayes
risk of θ̂ by

Rp(θ̂) =

∫
R(θ, θ̂)p(θ)dθ.

The Bayes estimator: is the θ̂ that minimizes Rp(θ̂).

Let
L(θ) = p(x1, . . . , xn|θ) =

∏
i

pθ(Xi)
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denote the likelihood function. Note that∫
R(θ, θ̂)p(θ)dθ =

∫ [∫
L(θ̂, θ)pθ(x1)pθ(x2) · · · pθ(xn)dx1 · · · dxn

]
p(θ)dθ

=

∫ ∫
L(θ̂, θ)p(x1, . . . , xn|θ)p(θ)dθdx1 · · · dxn

=

∫ ∫
L(θ̂, θ)p(x1, . . . , xn, θ)dθdx1 · · · dxn

=

∫ ∫
L(θ̂, θ)p(θ|x1, . . . , xn)p(x1, . . . , xn)dθdx1 · · · dxn

=

∫ ∫
L(θ̂, θ)p(θ|x1, . . . , xn)dθp(x1, . . . , xn)dx1 · · · dxn

=

∫
r(θ|x1, . . . , xn)p(x1, . . . , xn)dx1 · · · dxn

where

r(θ|x1, . . . , xn) =

∫
L(θ̂, θ)p(θ|x1, . . . , xn)dθ

is called the posterior risk. To minimize the Bayes risk, it suffices to choose θ̂ to minimize
r(θ|x1, . . . , xn) =.

For example, suppose that L = (θ̂ − θ)2. Then

r(θ|x1, . . . , xn) =

∫
(θ̂ − θ)2p(θ|x1, . . . , xn)dθ.

Take the derivative w.r.t. θ̂ and set it equal to 0. We get

θ̂ =

∫
θp(θ|x1, . . . , xn)dθ∫
p(θ|x1, . . . , xn)dθ

= E(θ|x1, . . . , xn)

which is the posterior mean.

As a point of comparison, the max-risk does not involve the choice of an arbitrary prior so
in that sense has some advantages over the Bayes risk.

Example: Let us revisit the two Bernoulli estimators from the standpoint of maximum
risk and Bayes risk. Suppose we take the uniform prior, then:

Rp(θ̂1) =

∫
θ(1− θ)

n
dθ =

1

6n
,

Rp(θ̂2) =
n

4(n+
√
n)2

,

so for large n the MLE has smaller Bayes risk.

On the other hand the estimator θ̂2 always has lower maximum risk. In the next lecture we
will show that this estimator is actually minimax optimal.
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