
Lecture Notes 22
Causal Inference

Prediction and causation are very different. Typical questions are:

Prediction: Predict Y after observing X = x
Causation: Predict Y after setting X = x.

Causation involves predicting the effect of an intervention. For example:

Prediction: Predict health given that a person takes vitamin C
Causation: Predict health if I give a person vitamin C

The difference between passively observing X = x and actively intervening and setting
X = x is significant and requires different techniques and, typically, much stronger assump-
tions. This is the area known as causal inference.

For years, causal inference was studied by statisticians, epidemiologists and economists.
The machine learning community was largely uninterested. This has changed. The ML
community now has an active research program in causation. This is because it is now
recognized that many problems that were once treated as prediction problems are actually
causal questions. Questions like: “If I place this ad on a web page, will people click on it?”
and “If I recommend a product will people buy it?” are causal questions, not predictive
questions.

1 Preliminaries

Before we jump into the details, there are a few general concepts to discuss.

1.1 Two Types of Causal Questions

There are two types of causal questions. The first deals with questions like this: do cell
phones cause brain cancer? In this case, there are variables X and Y and we want to know
the causal effect of X on Y . The challenges are: find a parameter θ that characterizes the
causal influence of X on Y and find a way to estimate θ. This is usually what we mean when
we refer to causal inference.

The second question is: given a set of variables, determine the causal relationship be-
tween the variables. This is called causal discovery. As we shall see, this problem is
statistically impossible despite the large number of papers on the topic.
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1.2 Two Types of Data

Data can be from a controlled, randomized experiment or from an observational study.
In the former, X is randomly assigned to subjects. In the latter, it is not randomly as-
signed. In randomized experiments, causal inference is straightforward. In observational
(non-randomized) studies, the problem is much harder and requires stronger assumptions
and also requires subject matter knowledge. Statistics and Machine Learning cannot solve
causal problems without background knowledge.

1.3 Two Languages for Causation

There are two different mathematical languages for studying causation. The first is based
on counterfactuals. The second is based on causal graphs. It will not seem obvious at first,
but the two are mathematically equivalent (apart from some small details). Actually, there
is a third language called structural equation models but this is very closely related to causal
graphs.

1.4 Example

Consider this story. A mother notices that tall kids have a higher reading level than short
kids. The mother puts her small child on a device and stretches the child until he is tall.
She is dismayed to find out that his reading level has not changed.

The mother is correct that height and reading skill are associated. Put another way, you
can use height to predict reading skill. But that does not imply that height causes reading
skill. This is what statisticians mean when they say:

correlation is not causation.

On the other hand, consider smoking and lung cancer. We know that smoking and lung
cancer are associated. But we also believe that smoking causes lung cancer. In this case,
we recognize that intervening and forcing someone to smoke does change his probability of
getting lung cancer.

1.5 Prediction Versus Causation

The difference between prediction (association/correlation) and causation is this: in predic-
tion we are interested in

P(Y ∈ A|X = x)

which means: the probability that Y ∈ A given that we observe that X is equal to x. For
causation we are interested in

P(Y ∈ A|set X = x)

which means: the probability that Y ∈ A given that we set X equal to x. Prediction is
about passive observation. Causation is about active intervention. The phrase correlation
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is not causation can be written mathematically as

P(Y ∈ A|X = x) 6= P(Y ∈ A|set X = x).

Despite the fact that causation and association are different, people confuse them up all
the time, even people trained in statistics and machine learning. On TV recently there was a
report that good health is associated with getting seven hours of sleep. So far so good. Then
the reporter goes on to say that, therefore, everyone should strive to sleep exactly seven
hours so they will be healthy. Wrong. That’s confusing causation and association. Another
TV report pointed out a correlation between people who brush their teeth regularly and low
rates of heart disease. An interesting correlation. Then the reporter (a doctor in this case)
went on to urge people to brush their teeth to save their hearts. Wrong!

To avoid this confusion we need a way to discuss causation mathematically. That is,
we need someway to make P(Y ∈ A|set X = x) formal. As I mentioned earlier, there are
two common ways to do this. One is to use counterfactuals. The other is to use causal
graphs. There are two different languages for saying the same thing.

Causal inference is tricky and should be used with great caution. The main messages
are:

1. Causal effects can be estimated consistently from randomized experiments.

2. It is difficult to estimate causal effects from observational (non-randomized) experi-
ments.

3. All causal conclusions from observational studies should be regarded as very tentative.

Causal inference is a vast topic. We will only touch on the main ideas here.

2 Counterfactuals

Consider two variables X and Y . We will call X the “exposure” or the “treatment.” We
call Y the “response” or the “outcome.” For a given subject we see (Xi, Yi). What we don’t
see is what their value of Yi would have been if we changed their value of Xi. This is called
the counterfactual. The whole causal story is made clear in Figure 1 which shows data (left)
and the counterfactuals (right).

Suppose that X is a binary variable that represents some exposure. So X = 1 means the
subject was exposed and X = 0 means the subject was not exposed. We can address the
problem of predicting Y from X by estimating E(Y |X = x). To address causal questions,
we introduce counterfactuals. Let Y1 denote the response if the subject is exposed. Let Y0
denote the response if the subject is not exposed. Then

Y =

{
Y1 if X = 1

Y0 if X = 0.
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Figure 1: Left: X and Y have positive association. Right: The lines are the counterfactuals,
i.e. what would happen to each person if I changed their X value. Despite the positive
association, the causal effect is negative. If we increase X everyone’s Y values will decrease.

More succinctly
Y = XY1 + (1−X)Y0. (1)

If we expose a subject, we observe Y1 but we do not observe Y0. Indeed, Y0 is the value we
would have observed if the subject had been exposed. The unobserved variable is called a
counterfactual. The variables (Y0, Y1) are also called potential outcomes. We have enlarged
our set of variables from (X, Y ) to (X, Y, Y0, Y1). A small dataset might look like this:

X Y Y0 Y1
1 1 * 1
1 1 * 1
1 0 * 0
1 1 * 1
0 1 1 *
0 0 0 *
0 1 1 *
0 1 1 *

The asterisks indicate unobserved variables. Causal questions involve the the distribution
p(y0, y1) of the potential outcomes. We can interpret p(y1) as p(y|set X = 1) and we can
interpret p(y0) as p(y|set X = 0). The mean treatment effect or mean causal effect is defined
by

θ = E(Y1)− E(Y0) = E(Y |set X = 1)− E(Y |set X = 0).
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The parameter θ has the following interpretation: θ is the mean response if we exposed
everyone minus the mean response if we exposed no-one.

Lemma 1 In general,

E[Y1] 6= E[Y |X = 1] and E[Y0] 6= E[Y |X = 0].

Exercise: Prove this.

Suppose now that we observe a sample (X1, Y1), . . . , (Xn, Yn). Can we estimate θ? In
general the answer is no. We can estimate

α = E(Y |X = 1)− E(Y |X = 0)

but α is not equal to θ. Quantities like E(Y |X = 1) and E(Y |X = 0) are predictive param-
eters. These are things that are commonly estimated in statistics and machine learning.

Let’s formalize this. Let P be the set of distributions for (X, Y0, Y1, Y ) such that P (X =
0) > δ and P (X = 1) > δ for some δ > 0. (We have no hope if we do not have positive
probability of observing exposed and unexposed subjects.) Recall that Y = XY1+(1−X)Y0.
The observed data are (X1, Y1), . . . , (Xn, Yn) ∼ P . Let θ(P ) = E[Y1] − E[Y0]. An estimator
is uniformly consistent if, for every ε > 0,

sup
P∈P

P (|θ̂n − θ(P )| > ε)→ 0

as n→∞.

Theorem 2 In general, there does not exist a uniformly consistent estimator of θ.

Proof. It is easy constrict p(x, y0, y1) and and q(x, y0, y1) such that θ(p) 6= θ(q) and yet
p(x, y) = q(x, y). �

2.1 Two Ways to Make θ Estimable

Fortunately, there are two ways to make θ estimable. The first is randomization and the
second is adjusting for confounding.

Randomization. Suppose that we randomly assign X. Then X will be independent of
(Y0, Y1). In symbols:

random treatment assignment implies : (Y0, Y1)qX.

Warning! Note that X is not independent of Y .
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Theorem 3 If X is randomly assigned, then θ = α where

α = E(Y |X = 1)− E(Y |X = 0).

A uniformly consistent estimator of α (and hence θ) is the plug-in estimator

α̂ =

∑n
i=1XiYi∑n
i=1Xi

−
∑n

i=1(1−Xi)Yi∑n
i=1(1−Xi)

.

Proof. Since X is independent of (Y0, Y1), we have

α = E(Y |X = 1)− E(Y |X = 0)

= E(Y1|X = 1)− E(Y0|X = 0) since Y = XY1 + (1−X)Y0

= E(Y1)− E(Y0) = θ since (Y0, Y1)qX.

Hence, random assignment makes θ equal to α. To prove the consistency of α̂, note that we
can write α̂ = (An/Bn)− (Cn/Dn). Also note that

α =
E[Y X]

E[X]
− E[Y (1−X)]

E[1−X]
≡ A

B
− C

D
.

Let ε be a small positive constant. By Hoeffding’s inequality and the union bound, with
high probability, An/Bn < (A + ε)/(B − ε) < (A/B) + ε∆1 for some positive constant ∆1.
Similarly, An/Bn > (A/B) − ε∆2, say. A similar argument applies to the second term and
the result follows. �

To summarize: If X is randomly assigned then correlation = causation. This is
why people spend millions of dollars doing randomized experiments.

The same results hold when X is continuous. In this case there is a counterfactual Y (x)
for each value x of X. We again have that, in general,

E[Y (x)] 6= E[Y |X = x].

See Figure 1. But if X is randomly assigned, then we do have E[Y (x)] = E[Y |X = x] and
so E[Y (x)] can be consistently estimated using standard regression methods. Indeed, if we
had randomly chosen the X values in Figure 1 then the plot on the left would have been
downward sloping. To see this, note that θ(x) = E[Y (x)] is defined to be the average of the
lines in the right plot. Under randomization, X is independent of Y (x). So

right plot = θ(x) = E[Y (x)] = E[Y (x)|X = x] = E[Y |X = x] = left plot.
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Adjusting For Confounding. In some cases it is not feasible to do a randomized
experiment and we must use data from from observational (non-randomized) studies. Smok-
ing and lung cancer is an example. Can we estimate causal parameters from observational
(non-randomized) studies? The answer is: sort of.

In an observational study, the treated and untreated groups will not be comparable.
Maybe the healthy people chose to take the treatment and the unhealthy people didn’t. In
other words, X is not independent of (Y0, Y1). The treatment may have no effect but we
would still see a strong association between Y and X. In other words, α might be large even
though θ = 0.

Here is a simplified example. Suppose X denotes whether someone takes vitamins and
Y is some binary health outcome (with Y = 1 meaning “healthy.”)

X 1 1 1 1 0 0 0 0
Y0 1 1 1 1 0 0 0 0
Y1 1 1 1 1 0 0 0 0

In this example, there are only two types of people: healthy and unhealthy. The healthy
people have (Y0, Y1) = (1, 1). These people are healthy whether or not that take vitamins.
The unhealthy people have (Y0, Y1) = (0, 0). These people are unhealthy whether or not
that take vitamins. The observed data are:

X 1 1 1 1 0 0 0 0
Y 1 1 1 1 0 0 0 0.

In this example, θ = 0 but α = 1. The problem is that people who choose to take
vitamins are different than people who choose not to take vitamins. That’s just another way
of saying that X is not independent of (Y0, Y1).

To account for the differences in the groups, we can measure confounding variables.
These are the variables that affect both X and Y . These variables explain why the two groups
of people are different. In other words, these variables account for the dependence between
X and (Y0, Y1). By definition, there are no such variables in a randomized experiment. The
hope is that if we measure enough confounding variables Z = (Z1, . . . , Zk), then, perhaps the
treated and untreated groups will be comparable, conditional on Z. This means that X is
independent of (Y0, Y1) conditional on Z. We say that there is no unmeasured confounding,
or that ignorability holds, if

X q (Y0, Y1)
∣∣∣ Z.
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The only way to measure the important confounding variables is to use subject matter
knowledge. In other words, causal inference in observational studies is not possible
without subject matter knowledge.

Theorem 4 Suppose that

X q (Y0, Y1)
∣∣∣ Z.

Then

θ ≡ E(Y1)− E(Y0) =

∫
µ(1, z)p(z)dz −

∫
µ(0, z)p(z)dz (2)

where
µ(x, z) = E(Y |X = x, Z = z).

A consistent estimator of θ is

θ̂ =
1

n

n∑
i=1

µ̂(1, Zi)−
1

n

n∑
i=1

µ̂(0, Zi)

where µ̂(x, z) is an appropriate, consistent estimator of the regression function µ(x, z) =
E[Y |X = x, Z = z].

Remark: Estimating the quantity in (2) well is difficult and involves an area of statistics
called semiparametric inference. In statistics, biostatistics, econometrics and epidemiology,
this is the focus of much research. It appears that the machine learning community has
ignored this goal and has focused instead on the quixotic goal of causal discovery.

Proof. We have

θ = E(Y1)− E(Y0)

=

∫
E(Y1|Z = z)p(z)dz −

∫
E(Y0|Z = z)p(z)dz

=

∫
E(Y1|X = 1, Z = z)p(z)dz −

∫
E(Y0|X = 0, Z = z)p(z)dz

=

∫
E(Y |X = 1, Z = z)p(z)dz −

∫
E(Y |X = 0, Z = z)p(z)dz (3)

where we used the fact that X is independent of (Y0, Y1) conditional on Z in the third line
and the fact that Y = (1−X)Y1 +XY0 in the fourth line. �

The process of including confounding variables and using equation (2) is known as adjust-

ing for confounders and θ̂ is called the adjusted treatment effect. The choice of the estimator
µ̂(x, z) is delicate. If we use a nonparametric method then we have to choose the smoothing
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parameter carefully. Unlike prediction, bias and variance are not equally important. The
usual bias-variance tradeoff does not apply. In fact bias is worse than variance and we
need to choose the smoothing parameter smaller than usual. As mentioned above, there is
a branch of statistics called semiparametric inference that deals with this problem in detail.

It is instructive to compare the casual effect

θ =

∫
µ(1, z)p(z)dz −

∫
µ(0, z)p(z)dz

with the predictive quantity

α = E(Y |X = 1)− E(Y |X = 0)

=

∫
µ(1, z)p(z|X = 1)dz −

∫
µ(0, z)p(z|X = 0)dz

which are mathematically (and conceptually) quite different.

We need to treat θ̂ cautiously. It is very unlikely that we have successfully measured all
the relevant confounding variables so θ̂ should be regarded as a crude approximation to θ at
best.

In the case where E[Y |X = x, Z = z] is linear, the adjusted treatment effect takes a
simple form. Suppose that E[Y |X = x, Z = z] = β0 + β1x+ βT

2 z. Then

θ =

∫
[β0 + β1 + βT

2 z]dP (z)−
∫

[β0 + βT
2 z]dP (z) = β1.

In a linear regression, the coefficient in front of x is the causal effect of x if (i) the model is
correct and (ii) all confounding variables are included in the regression.

3 Causal Graphs and Structural Equations

Another way to capture the difference between P (Y ∈ A|X = x) and P (Y ∈ A|set X = x) is
to represent the distribution using a directed graph. Then we capture the second statement
by performing certain operations on the graph. Specifically, we break the arrows into the
some variables to represent an intervention.

A Directed Acyclic Graph (DAG) is a graph for a set of variables with no cycles. The
graph defines a set of distributions of the form

p(y1, . . . , yk) =
∏

p(yj|parents(yj)

where parents(yj) are the parents of yj. A causal graph is a DAG with extra information.
A DAG is a causal graph if it correctly encodes the effect of setting a variable to a fixed
value.

Consider the graph G in Figure 2. Here, X denotes treatment, Y is response and Z is
a confounding variable. To find the causal distribution p(y|set X = x) we do the following
steps:
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Z X Y

Figure 2: A basic causal graph. The arrows represent the effect of interventions. For example,
the arrow from X to Y means that changing X effects the distribution of Y .

1. Form a new graph G∗ by removing all arrow into X. Now set X equal to x. This
corresponds to replacing the joint distribution p(x, y, z) = p(z)p(x|z)p(y|x, z) with the
new distribution p∗(y, z) = p(z)p(y|x, z). The factor p(x|z) is removed because we
know regard x as a fixed number. (Actually, p(x|z) is replaced with a point mass at
x.)

2. Compute the distribution of y from the new distribution:

p(y|set X = x) ≡ p∗(y) =

∫
p∗(y, z)dz =

∫
p(z)p(y|x, z)dz.

Now we have that

p(y|set X = 1)− p(y|set X = 0) =

∫
p(y|1, z)p(z)dz −

∫
p(y|0, z)p(z)dz.

Hence,

θ = E[Y |set X = 1]− E[Y |set X = 0]

=

∫
yp(y|1, z)p(z)dz −

∫
yp(y|0, z)p(z)dz = E[Y |X = 1, Z = z]p(z)dz − E[Y |X = 0, Z = z]p(z)dz

=

∫
µ(1, z)p(z)dz −

∫
µ(0, z)p(z)dz

This is precisely the same equation as (2). Both approaches lead to the same formulas for the
causal effect. Of course, if there were unobserved confounding variables, then the formula
for θ would involve these variables and the causal effect would be non-estimable (as before).

In a randomized experiment, there would be no arrow from Z to X. (That’s the point of
randomization). In that case the above calculations shows that θ = E(Y |X = 1)−E(Y |X =
0) which again agrees with the counterfactual approach.

In general, the DAG approach and the counterfactual approach lead to the same formulas
for causal effects. They are two different languages for the same thing.

The formulas derived from a causal graph will only be correct if the causal graph is
correct. Right now, we are assuming that the the correct causal structure is known to us,
and is based on subject matter knowledge. For example, we know that rain cases wet lawns
but wet lawns don’t cause rain.

Example 5 You may have noticed a correlation between rain and having a wet lawn, that is,
the variable “Rain” is not independent of the variable “Wet Lawn” and hence pR,W (r, w) 6=
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pR(r)pW (w) where R denotes Rain and W denotes Wet Lawn. Consider the following two
DAGs:

Rain −→Wet Lawn Rain←−Wet Lawn.

The first DAG implies that p(w, r) = p(r)p(w|r) while the second implies that p(w, r) =
p(w)p(r|w) No matter what the joint distribution p(w, r) is, both graphs are correct. Both
imply that R and W are not independent. But, intuitively, if we want a graph to indicate
causation, the first graph is right and the second is wrong. Throwing water on your lawn
doesn’t cause rain. The reason we feel the first is correct while the second is wrong is because
the interventions implied by the first graph are correct.

Look at the first graph and form the intervention W = 1 where 1 denotes “wet lawn.”
Following the rules of intervention, we break the arrows into W to get the modified graph:

Rain set Wet Lawn =1

with distribution p∗(r) = p(r). Thus P(R = r | W := w) = P(R = r) tells us that “wet lawn”
does not cause rain.

Suppose we (wrongly) assume that the second graph is the correct causal graph and form
the intervention W = 1 on the second graph. There are no arrows into W that need to be
broken so the intervention graph is the same as the original graph. Thus p∗(r) = p(r|w)
which would imply that changing “wet” changes “rain.” Clearly, this is nonsense.

Both are correct probability graphs but only the first is correct causally. We know the
correct causal graph by using background knowledge.

Causal graphs can also be represented by structural equation models. The graph in Figure
2 can be written as:

Z = g1(U)

X = g2(Z, V )

Y = g3(Z,X,W )

for some functions g1, g2, g3 and some random variables (U, V,W ). Intervening on X corre-
sponds to replacing the second equation with

X = x.

4 Causal Discovery Is Impossible

We could try to learn the correct causal graph from data but this is dangerous. In fact it is
impossible. There are claims that it is possible but these claims are based on some unusual
and not very convincing asymptotics. Specifically, there are claims that the graph can be
discovered with some procedure and that the procedure is correct with probability tending
to 1 as n → ∞. But the asymptotic statement is non-standard: there is no finite sample
size, however large, that can ever approximate the infinite limit.
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What’s worse, if we try to form a confidence interval for the size of the causal effect,
then the confidence is is infinite no matter how large the sample is. This is Panglossian
asymptotics. To understand what is going on, let’s consider two examples.

Suppose we observe (X1, Y1), . . . , (Xn, Yn) where Xi is the income of the subject’s parents
when the subject was a child, and Yi is income of the subject at age 50. In this case, the
variables are time ordered. So we can have X causing Y but we cannot have Y causing
X. We must always allow for the fact that there may be many unobserved confounding
variables. We will denote these by U = (U1, . . . , Uk) where k is potentially very large. There
are eight possible graphs as shown in Figure 3.1 Our main interest is in whether there is an
arrow from X to Y .

Let’s see how the graph discovery community reasons in this case. Suppose we observe a
large sample (X1, Y1), . . . , (Xn, Yn). Let α be some measure of dependence between X and
Y . It is possible to define a consistent estimator α̂. The causal discovery algorithms work as
follows in this example. Suppose we find that there is a strong association between X and
Y . (We can formally test for dependence between X and Y .) This is consistent with graphs
4,5,6,7 and 8. Some of these graphs include an arrow from X to Y and some don’t. The
conclusion is that we cannot tell if X causes Y . In this case, the causal discovery algorithms
are correct.

Now suppose instead that we find that there is no significant association between X and
Y . This is consistent with the first three graphs. None of these graphs include an arrow from
X to Y . However, the last graph is also consistent with X being independent of Y . This
might seem counterintuitive when you look at this graph. But the correlation created by the
path U −→ X −→ Y can cancel out the correlation created by the path U −→ Y . Such a
cancellation is called unfaithfulness. Such a cancellation is considered to be unlikely. And
the set B of such unfaithful distributions is “small.” (For example, if the joint distribution
is Normal, then the parameters that correspond to unfaithful distributions have measure 0.)
So it seems reasonable to restrict ourselves to faithful distributions. If we restrict to faithful
distributions, then the only explanation for the independence of X and Y is the first three
graphs. We conclude that X does not cause Y .

Let me summarize the logic. There is a measure of dependence α and a consistence
estimator α̂. We are interested in the causal effect θ. We showed earlier that θ is a function
p(x, y, u). In particular, θ = 0 means there is no arrow from X to Y and θ 6= 0 means there
is an arrow from X to Y . We have:

α 6= 0 =⇒ θ can be 0 or nonzero (no conclusion)

α = 0 and faithfulness =⇒ θ = 0 (no causal effect).

Since α̂ is a consistent estimator of α, we can substitute α̂ for α and our conclusion is
asymptotically correct. Note that if P ∈ B, the relationship between α and θ breaks down.
If P ∈ B then θ 6= 0 but α = 0.

Unfortunately, this reasoning is bogus. Let P be a set of distributions for (X, Y, U). Our

1Actually, we should have a separate node for each Uj . And then there are many more possible graphs.
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Figure 3: The eight possible causal graphs corresponding to the example.
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model is
P ′ = P − B

where B is the set of unfaithful distributions. The problem is that we can explain α̂ ≈ 0 by
graph 1 or by a P that is close to B. We can always find a distribution P is that is faithful
but arbitrarily close to unfaithful. We can never tell if α̂ ≈ 0 is due to “no arrow from X to
Y ” or from P being very close to unfaithful. No matter how large n is, we can find a P that
is so close to unfaithful that it could result in α̂ ≈ 0.

By the way, keep in mind that U is very high dimensional. The set B might be “small”
in some sense, but it is very complex. It is like a spider web.

To make all this more precise, let ψ = 1 if there is an arrow from X to Y and let ψ = 0
if there is no arrow from X to Y . Let ψ̂ be the output of any causal discovery procedure.

Theorem 6 For any procedure,

sup
P∈P ′

P (ψ̂ = ψ)→ 1

as n→∞.

This result follows since there are infinitely many distributions in P ′ that are arbitrarily
close to B and the procedure breaks down at B. The problem is that asymptotics have
to be uniform over P. This is a point I have emphasized many times in this course.
Uniformity is critical for sound statistical reasoning.

There is another way to see the problem. Consider the causal effect

θ(x) = E[Y (x)] =

∫
E[Y |X = x, U = u]p(u)du.

Discovering the graph involves implicitly estimating (or testing) θ(x). But it is clear that
θ(x) is not estimable. It depends on E[Y |X = x, U = u] and p(u). But we never observe
U . We can’t estimate parameters that are functions of unobserved random variables! The
causal parameter is not identified. It is easy to show that the only valid confidence interval
for θ(x) is the entire real line. In other words, if we want

lim inf
n→∞

inf
P∈P ′

P (θ(x) ∈ Cn) ≥ 1− α

then Cn = R with high probability. This shows that the causal effect cannot be estimated.
For yet another perspective, let us suppose that we model the whole distribution. The

distribution is

p(u, x, y) = p(u)p(x|u)p(y|x, u) = p(u1, . . . , uk)p(x|u1, . . . , uk)p(y|x, u1, . . . , uk).

The unknown parameters are the three functions p(u1, . . . , uk), p(x|u1, . . . , uk) and p(y|x, u1, . . . , uk).
Suppose we take a chance and assume these distributions are Normal. We can then get the
mle for the parameters and hence for θ(x). But again, we don’t observe any U ′s. It’s easy
to see that the mle is for θ(x) is not defined. That is, every value of θ(x) is an mle.
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To have reliable inference we need uniformly consistent estimates and we need valid confi-
dence sets. There are no consistent estimators or valid confidence sets for causal parameters
when there is unobserved confounding. The only solutions are: measure the confounders or
do a randomized study.

Things get even worse when there are more than two variables. Let’s consider another
example. Suppose that we have the time ordered variables X, Y, Z. There are potential
(unobserved) confounders U and V . See Figure 4. Again, the causal effects are not identified.
There is nothing we can do here. But let’s follow the causal discovery logic.

Suppose we observe a large sample and find that (i) X and Y are dependent, (ii) Y and
Z are dependent and (iii) X and Z are conditionally independent given Y . I will explain in
class how we can use the logic of causal discovery to conclude that:
(a) X causes Y
(b) Y causes Z
(c) there are no confounding variables in the Universe.

The last conclusion is astounding and should be be a hint that something is wrong.

Summary: Here is the bottom line:

1. In any real example based on observational data, we have to allow for the possibility
that there are unobserved confounding variables.

2. Causal quantities are functions of these unobserved variables.

3. It is impossible to estimate anything that is a function of unobserved variables.

4. Therefore, causal discovery is impossible.

Further Reading: A good tutorial with lost of good references is:
E. Kennedy (2015). Semiparametric Theory and Empirical Processes in Causal Inference.

arXiv:1510.04740
Also, there is a very good, free book here:
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

Appendix: More on Graphical Interventions

If you are having difficulty understanding the difference between p(y|x) and p(y|setx), then
this section will provide additional explanation. It is helpful to consider two different com-
puter programs. Consider the DAG in Figure 2. The probability function for a distribution
consistent with this DAG has the form p(x, y, z) = p(x)p(y|x)p(z|x, y). The following is
pseudocode for generating from this distribution.

For i = 1, . . . , n :

xi <− pX(xi)

yi <− pY |X(yi|xi)
zi <− pZ|X,Y (zi|xi, yi)
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Figure 4: The full causal graph for the second example.
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Suppose we run this code, yielding data (x1, y1, z1), . . . , (xn, yn, zn). Among all the times
that we observe Y = y, how often is Z = z? The answer to this question is given by the
conditional distribution of Z|Y . Specifically,

P(Z = z|Y = y) =
P(Y = y, Z = z)

P(Y = y)
=
p(y, z)

p(y)

=

∑
x p(x, y, z)

p(y)
=

∑
x p(x) p(y|x) p(z|x, y)

p(y)

=
∑
x

p(z|x, y)
p(y|x) p(x)

p(y)
=
∑
x

p(z|x, y)
p(x, y)

p(y)

=
∑
x

p(z|x, y) p(x|y).

Now suppose we intervene by changing the computer code. Specifically, suppose we fix Y
at the value y. The code now looks like this:

set Y = y

for i = 1, . . . , n

xi <− pX(xi)

zi <− pZ|X,Y (zi|xi, y)

Having set Y = y, how often was Z = z? To answer, note that the intervention has
changed the joint probability to be

p∗(x, z) = p(x)p(z|x, y).

The answer to our question is given by the marginal distribution

p∗(z) =
∑
x

p∗(x, z) =
∑
x

p(x)p(z|x, y).

This is p(z|set Y = y).
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