LECTURE NOTES 7

1 Stochastic convergence

Stochastic convergence refers to convergence of sequences of random variables. Recall from
the last notes that we are concerned with two types of convergence in probability and con-
vergence in distribution. Convergence in probability implies convergence in distribution but
the reverse is not, in general, true.

Let Y,, ~ N(0,n71) for n = 1,2,.... Then Y, £ 0. We also have that Y, ~» Z where Z is
degenerate at 0, that is P(Z = 0) = 1. Also, y/nY,, ~ N(0,1). In fact, a stronger statement

is true: \/nY, < N(0,1) for all n.
Now suppose that Y,, ~ N(n,1). Then Y,, does not converge to anything.
We say that a sequence Y, converges to Y in quadratic mean if:

E(Y, —Y)> =0,

as n — oo. This is once again a convergence of values of a sequence of random variables. In
fact, convergence in quadratic mean = convergence in probability since by Chebyshev’s
inequality we know that:

E(Y, — V)2

P(lY,=Y|>¢) < 5

— 0,
€

as n — oo. Usually, we are concerned with convergence in quadratic mean to a constant c.
This means that E(Y, — ¢)2 — 0. This implies that Y, 2> c.

We say that a sequence Y,, converges to Y in /¢, if:
ElY, - Y| — 0,

as n — oco. Convergence in quadratic mean = convergence in ¢;. To prove this we can
just use the Cauchy-Schwarz inequality:

ElY, -Y|<VEY,-Y)2 =0,
as n — o0.
We say that Y,, converges almost surely to c if

P(lim Y, =¢) = 1.

n—oo

This is stronger than convergence in probability.



2 The Central Limit Theorem (CLT)

Let Xi,...,X, beiid. with mean p and variance 6. Let X,, = 13" | X; and

Zn \/ﬁ(ﬂn — :u) .

o

Note that E[Z,] = 0 and Var[Z,] = 1.

Theorem 1 7, converges in distribution to a standard Gaussian. That is, Z, ~ Z where

Z ~ N(0,1).

We can use the CLT to approximate probability calcuations. For example:

P(agfgb):P(MSan ﬁ(b—u))

%P(\/ﬁ(su) <7< \/ﬁ(bgu))
_q)<\/ﬁ(ba—u)> _q)(x/ﬁ(c;—u)>

where @ is the cdf of a standard Normal.

Theorem 2 Let R
V(i — 1)

s
where s> =n"1 > (X; — X,)?. Then T, ~ N(0,1).

T, =

(The theorem is also true if we define s = (n — 1)1 3°,(X; — X,,)%. We'll see later why we
might want to do this.) It then follows that

PlasX <p~o(YVOZM) g (vEEZM),
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If we define the distance between the CDF of the average, and the CDF of a Gaussian
appropriately, we can ask how far the two CDF's are for a finite sample size n. The answer
is C'/+/n for some constant C'. These results are typically called Berry-Esseen bounds. They
assure us that the convergence to normality can happen quite quickly in some important
cases.



If we average a collection of independent random vectors then they will converge in distri-
bution to a multivariate Gaussian.

Given that Y,, converges in distribution to a Gaussian, one can ask about functions of Y,,.
Under some regularity conditions these also converge to a Gaussian, and the delta method
tells us how to compute the mean and variance of the new Gaussian. In detail, If Y,, ~~
N(u,0?) and r is a smooth function, then r(Y,,) ~ N(r(u), (r'(1))%c?).

3 Op and op

In statistics and machine learning, we make use of op and Op notation.

Recall first, that a, = o(l) means that a, — 0 as n — o0. a, = o(b,) means that
an /b, = o(1). a, = O(1) means that a, is eventually bounded, that is, for all large n,
la,,| < C for some C' > 0. a,, = O(b,) means that a,/b, = O(1).

We write a,, ~ b, if both a, /b, and b, /a,, are eventually bounded. In computer science this
is written as a, = ©(b,) but we prefer using a, ~ b, since, in statistics, © often denotes
something else.

Now we move on to the probabilistic versions. Say that Y, = op(1) if Y, . Say that
Y, = op(a,) if, Y, /a, = op(1).

Say that Y,, = Op(1) if, for every € > 0, there is a C' > 0 such that
P(|Y,] > C) <e
Say that Y,, = Op(a,) if ¥,,/a,, = Op(1).

Let’s use Hoeffding’s inequality to show that sample proportions are Op(1/y/n) within the
the true mean. Let Y3,...,Y, be coin flips i.e. Y; € {0,1}. Let p = P(Y; = 1). Let

1 n
An = - Y.
pn =~ 21
We will show that: p,, —p = op(1) and p,, — p = Op(1/y/n).

We have that
P(|p, —p| > ¢€) < 272 5 ()
and so p, — p = op(1). Also,
R N C
P(vnlp, —pl > C) = P [pn—p| > 7

< 2e72C° < §



if we pick C large enough. Hence, /n(p, — p) = Op(1) and so

oreor()

Make sure you can prove the following:

Op(1)op(1) = op(1)

Op(1) P(l) = Op(1)

op(1) +Op(1) = Op(1 )
Op(an)op(bn) = op(anby)
Op(an)Op(by) = Op(anby)



