
LECTURE NOTES 7

1 Stochastic convergence

Stochastic convergence refers to convergence of sequences of random variables. Recall from
the last notes that we are concerned with two types of convergence in probability and con-
vergence in distribution. Convergence in probability implies convergence in distribution but
the reverse is not, in general, true.

Let Yn ∼ N(0, n−1) for n = 1, 2, . . .. Then Yn
P→ 0. We also have that Yn  Z where Z is

degenerate at 0, that is P (Z = 0) = 1. Also,
√
nYn  N(0, 1). In fact, a stronger statement

is true:
√
nYn

d
= N(0, 1) for all n.

Now suppose that Yn ∼ N(n, 1). Then Yn does not converge to anything.

We say that a sequence Yn converges to Y in quadratic mean if:

E(Yn − Y )2 → 0,

as n→∞. This is once again a convergence of values of a sequence of random variables. In
fact, convergence in quadratic mean =⇒ convergence in probability since by Chebyshev’s
inequality we know that:

P(|Yn − Y | ≥ ε) ≤ E(Yn − Y )2

ε2
→ 0,

as n → ∞. Usually, we are concerned with convergence in quadratic mean to a constant c.

This means that E(Yn − c)2 → 0. This implies that Yn
P→ c.

We say that a sequence Yn converges to Y in `1 if:

E|Yn − Y | → 0,

as n → ∞. Convergence in quadratic mean =⇒ convergence in `1. To prove this we can
just use the Cauchy-Schwarz inequality:

E|Yn − Y | ≤
√

E(Yn − Y )2 → 0,

as n→∞.

We say that Yn converges almost surely to c if

P( lim
n→∞

Yn = c) = 1.

This is stronger than convergence in probability.
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2 The Central Limit Theorem (CLT)

Let X1, . . . , Xn be i.i.d. with mean µ and variance σ2. Let Xn = 1
n

∑n
i=1Xi and

Zn =

√
n(µ̂n − µ)

σ
.

Note that E[Zn] = 0 and Var[Zn] = 1.

Theorem 1 Zn converges in distribution to a standard Gaussian. That is, Zn  Z where
Z ∼ N(0, 1).

We can use the CLT to approximate probability calcuations. For example:

P (a ≤ X ≤ b) = P

(√
n(a− µ)

σ
≤ Zn ≤

√
n(b− µ)

σ

)
≈ P

(√
n(a− µ)

σ
≤ Z ≤

√
n(b− µ)

σ

)
= Φ

(√
n(b− µ)

σ

)
− Φ

(√
n(a− µ)

σ

)
where Φ is the cdf of a standard Normal.

Theorem 2 Let

Tn =

√
n(µ̂n − µ)

s

where s2 = n−1
∑

i(Xi −Xn)2. Then Tn  N(0, 1).

(The theorem is also true if we define s2 = (n− 1)−1
∑

i(Xi −Xn)2. We’ll see later why we
might want to do this.) It then follows that

P (a ≤ X ≤ b) ≈ Φ

(√
n(b− µ)

s

)
− Φ

(√
n(a− µ)

s

)
.

If we define the distance between the CDF of the average, and the CDF of a Gaussian
appropriately, we can ask how far the two CDFs are for a f inite sample size n. The answer
is C/

√
n for some constant C. These results are typically called Berry-Esseen bounds. They

assure us that the convergence to normality can happen quite quickly in some important
cases.
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If we average a collection of independent random vectors then they will converge in distri-
bution to a multivariate Gaussian.

Given that Yn converges in distribution to a Gaussian, one can ask about functions of Yn.
Under some regularity conditions these also converge to a Gaussian, and the delta method
tells us how to compute the mean and variance of the new Gaussian. In detail, If Yn  
N(µ, σ2) and r is a smooth function, then r(Yn) N(r(µ), (r′(µ))2σ2).

3 OP and oP

In statistics and machine learning, we make use of oP and OP notation.

Recall first, that an = o(1) means that an → 0 as n → ∞. an = o(bn) means that
an/bn = o(1). an = O(1) means that an is eventually bounded, that is, for all large n,
|an| ≤ C for some C > 0. an = O(bn) means that an/bn = O(1).

We write an ∼ bn if both an/bn and bn/an are eventually bounded. In computer science this
is written as an = Θ(bn) but we prefer using an ∼ bn since, in statistics, Θ often denotes
something else.

Now we move on to the probabilistic versions. Say that Yn = oP (1) if Yn
P→ 0. Say that

Yn = oP (an) if, Yn/an = oP (1).

Say that Yn = OP (1) if, for every ε > 0, there is a C > 0 such that

P(|Yn| > C) ≤ ε.

Say that Yn = OP (an) if Yn/an = OP (1).

Let’s use Hoeffding’s inequality to show that sample proportions are OP (1/
√
n) within the

the true mean. Let Y1, . . . , Yn be coin flips i.e. Yi ∈ {0, 1}. Let p = P(Yi = 1). Let

p̂n =
1

n

n∑
i=1

Yi.

We will show that: p̂n − p = oP (1) and p̂n − p = OP (1/
√
n).

We have that
P(|p̂n − p| > ε) ≤ 2e−2nε

2 → 0

and so p̂n − p = oP (1). Also,

P(
√
n|p̂n − p| > C) = P

(
|p̂n − p| >

C√
n

)
≤ 2e−2C

2

< δ
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if we pick C large enough. Hence,
√
n(p̂n − p) = OP (1) and so

p̂n − p = OP

(
1√
n

)
.

Make sure you can prove the following:

OP (1)oP (1) = oP (1)

OP (1)OP (1) = OP (1)

oP (1) +OP (1) = OP (1)

OP (an)oP (bn) = oP (anbn)

OP (an)OP (bn) = OP (anbn)
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