Homework 10

36-705

Due: Thursday November 5 by 3pm.

- 1. Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ and $Y_1, \ldots, Y_m \sim \text{Bernoulli}(q)$. Construct an asymptotic 1α confidence interval for $\psi = \log(p/q)$.
- 2. Let $X_1, \ldots, X_n \sim P$ and let $\psi(P) = \int a(x)dP(x)$ for some (known) function a(x). Compute the influence function. Use this to find an asymptotic 1α confidence interval for ψ .
- 3. Let $X_1, \ldots, X_n \sim P$ and let $\psi(P) = [\int a(x)dP(x)]^2$ for some (known) function a(x). Compute the influence function. Use this to find an asymptotic 1α confidence interval for ψ .
- 4. Let $X_1, \ldots, X_n \sim P$ and assume that P has a strictly positive density p. Let ψ be the median of P. Find the influence function for ψ .
- 5. Let $X_1, \ldots, X_n \sim P$ and let $\psi(P) = \int a(x)dP(x)$ for some (known) function a(x). Let X_1^*, \ldots, X_n^* denote a bootstrap sample from the empirical distribution. Let $\widehat{\psi}^* = n^{-1} \sum_i a(X_i^*)$.
 - (a) Find

$$\mathbb{E}[\widehat{\psi}^*|X_1,\ldots,X_n]$$

and

$$\operatorname{Var}[\widehat{\psi}^*|X_1,\ldots,X_n].$$

(b) Find $\mathbb{E}[\widehat{\psi}^*]$ and $\operatorname{Var}[\widehat{\psi}^*]$.