Homework 12

36 - 705

Due: Thursday November 19th by 3pm.

1. Consider the infinite Gaussian sequence model

$$Y_i = \theta_i + \frac{\sigma}{\sqrt{n}}\epsilon_i \qquad i = 1, 2, \dots,$$

where $\epsilon_1, \epsilon_2, \ldots \sim N(0, 1)$.

(a) Let $\hat{\theta} = (Y_1, Y_2, ...,)$ be the maximum likelihood estimator. Show that this estimator is not consistent i.e. $P(||\hat{\theta} - \theta|| < \delta)$ does not tend to 1 for every δ .

(b) Let $\widehat{\theta} = (\widehat{\theta}_1, \widehat{\theta}_2, \ldots)$ where

$$\widehat{\theta}_i = \begin{cases} Y_i & i \le k_n \\ 0 & i > k_n \end{cases}$$

Show that if $k_n \to \infty$ as $n \to \infty$ and $k_n = o(n)$ then

$$\sum_{i=1}^{\infty} (\widehat{\theta}_i - \theta_i)^2 \xrightarrow{P} 0$$

2. We showed that the hard-thresholding algorithm for the Gaussian sequence model satisfies

$$R(\widehat{\theta}, \theta^*) \le CR\sigma \sqrt{\frac{\log d}{n}},$$

for estimating a vector θ^* that is ℓ_1 -sparse, i.e. satisfies $\sum_{i=1}^d |\theta_i| \le R$ (where C > 0 is some constant). Suppose that, θ^* is instead ℓ_q sparse for some $q \in (0, 1]$, i.e.

$$\sum_{i=1}^d |\theta_i|^q \le R_q.$$

Then show that for some constant C > 0 the hard-thresholding estimator has risk:

$$R(\hat{\theta}, \theta^*) \le CR_q \left(\frac{\sigma^2 \log d}{n}\right)^{1-q/2}$$

Notice that once again the estimator can have risk $\rightarrow 0$ even when $d \gg n$. Furthermore, notice that the same hard-thresholding estimator works for a variety of different notions of sparsity.

3. Let

$$Y_i = \beta X_i + \epsilon_i$$

where $\mathbb{E}[\epsilon_i] = 0$ and $\operatorname{Var}[\epsilon_i] = \sigma^2$.

- (a) Find the least squares estimator $\hat{\beta}$.
- (b) Find the limiting distribution of $\sqrt{n}(\hat{\beta} \beta)$ (not conditional on the X_i 's).
- 4. Suppose that

$$Y_i = \beta X_i + \epsilon_i,$$

where $\epsilon_i \sim N(0, \sigma^2)$, and X_i are i.i.d., have finite second moment, and $X_i \in \mathbb{R}$. Rather than observe X_i , however, we observe a noisy version W_i where,

$$W_i = X_i + \delta_i,$$

and $\delta_i \sim N(0, \tau^2)$, independently of everything else. So we observe *n* i.i.d samples of the form $\{(Y_1, W_1), \ldots, (Y_n, W_n)\}$. Consider the least squares estimator:

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} Y_i W_i}{\sum_{i=1}^{n} W_i^2},$$

and show that the estimator is inconsistent, i.e. show that $\hat{\beta} \xrightarrow{P} a\beta$ where $a \neq 1$. Find a. Suppose that τ was known to you. Construct a consistent estimator of β .