
Homework 13
36-705

Due: Thursday December 3 by 3pm.

1. Let X1, . . . , Xn ∼ N(µ, 1). Let µ have a N(a, b2) prior.

(a) Find the posterior.

(b) Find c1 and c2 so that P (c1 < µ < c2|X1, . . . , Xn) = 1− α.

(c) Show that, from the frequentist perspective, P (µ ∈ C)→ 1− α as n→∞ where C = [c1, c2].

2. Consider a model (pθ : θ ∈ Θ) where the parameter space Θ = {θ1, . . . , θk} is finite. The π be prior
for θ. Let θ∗ denote that true value of θ. In other words, we observe X1, . . . , Xn ∼ pθ∗ . Show that
a necessary and sufficient condition for the posterior to concentrate at θ∗ is π(θ∗) > 0. That is, let

bn = P (θ = θ∗|X1, . . . , Xn). Then bn
P→ 1 if and only if π(θ∗) > 0.

3. Let X1, . . . , Xn ∼ pθ where θ ∈ R. The posterior density is

p(θ|X1, . . . , Xn) ∝ L(θ)π(θ)

where L(θ) is the likelihood and π(θ) is the prior. Give an informal, heuristic argument to show that
the posterior is approximately Normal.

Hint: write L(θ) = e`(θ) where `(θ) is the log-likelihood. Now Taylor expand the log-likelihood around
the mle.

4. We saw that AIC adds a correction because the log-likelihood is a biased estimate of how well the log-
likelihood approximates the KL distance. Another way to say this is that the likelihood of the observed
data is a biased estimate of the likelihood of a future observation. We’ll take a closer look at that
problem in this question. Suppose that X1, . . . , Xn ∼ N(θ, I) where θ ∈ Rd. Let `n(θ) =

∑
i `(θ;Xi)

denote the log-likelihood and `(θ;Xi) = log pθ(Xi). Let θ̂ be the mle. We want to show that `n(θ̂) is

a biased estimate of `(θ̂;X) = log pθ̂(Xi), where X is a new observation. The negative of the training
log-likelihood (up to constants) is:

`n(θ̂) =
1

2n

n∑
i=1

‖Xi − θ̂‖22.

The MLE is θ̂ = 1
n

∑n
i=1Xi.

(a) Show that,

E[`n(θ̂)] =
d

2
− d

2n
.

(b) For a new observation X, the negative of the true log-likelihood of that point is

`(θ̂;X) =
1

2
‖X − θ̂‖22.

Show that this has mean
d

2
+

d

2n
.

(c) This shows that the training log-likelihood has an upward bias (or the training loss on average
appears lower than it really is) and that this bias depends on the complexity of the parameter we
are estimating (in this case, we are estimating a d-dimensional mean). Use this to justify the AIC
correction to the training log-likelihood in this setting.
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