
Lecture Notes 10
36-705

The first chunk of our course has focused primarily on properties of averages of i.i.d. random
variables. In particular, the question of interest roughly was “how close is an average of
i.i.d. random variables to an expectation?”. We developed tail bounds (non-asymptotic)
and understood the limiting distribution of the average (asymptotic) as ways to attack this
question. Then we discussed uniform laws where the question was how to argue that many
(possibly related averages) converge to their respective expectations.

Now, we will switch gears and start to talk a bit more formally about statistical estimation
and inference. Before we can make sense of these questions however we need to define a
statistical model.

1 Statistical Models

The typical starting point for statistical inference should be familiar to you by now: we
suppose that we obtain an i.i.d sample {X1, . . . , Xn} from some distribution P .

Often, we further hypothesize restrictions on the set of possible distributions that could
have generated the data, i.e. we suppose that P ∈ P where P is just some collection of
distributions. We refer to P as the statistical model.

The common classes of distributions usually fall into one of two broad categories (with lots
of fuzziness in between):

1. Parametric models: Here the statistical model P is described by a finite set of
parameters. We usually write these as:

P = {p(x; θ) : θ ∈ Θ} ,

where Θ ⊆ Rd, i.e. these are a collection of distributions that we can describe using d
real-valued parameters. We use the notation p(x; θ) or pθ(x) to denote the density of
the random variable X, where the distribution is parameterized by θ.

A typical example is X1, . . . , Xn ∼ N(µ, σ2), and in this case the parameter θ =
(µ, σ) ∈ R2.

2. Non-parametric models: Roughly, non-parametric models are those which cannot
be described by a finite set of parameters.

A few common examples are: (1) the set of all possible distributions on R (say):

P = {all distributions on R} .
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In this case we are making no assumptions on the data generating process (beyond the
i.i.d. assumption). When we studied estimating the CDF we made no assumptions
and were implicitly working with this non-parametric model.

(2) Another common example is the set of distributions with smooth (say with square
integrable second derivative) densities, i.e.

P =

{
p :

∫
R
(p′′(x))2dx ≤ C

}
.

The model assumptions are the starting point for all subsequent inference, and can strongly
influence our conclusions about the data. In general, non-parametric models are making
much weaker assumptions about the data, while parametric models make strong (often un-
justifiable assumptions).

On the other hand, as we will see later on in the course, parametric models can often be
estimated using far fewer samples and can sometimes be much more interpretable. When
we use parametric models, we should generally think of it as an approximation.
It is rare that we would expect a parametric model to be exactly correct.

We will begin investigating parametric models and developing a comprehensive theory for es-
timation and inference for parametric models before turning our attention to non-parametric
models.

2 Statistics

A statistic is simply a function of the observed sample, i.e. if we have X1, . . . , Xn ∼ P then
any function T (X1, . . . , Xn) is called a statistic. A statistic is a random variable.

Some examples of statistics include:

1. order statistics, X(1) ≤ X(2) ≤ · · · ≤ X(n)

2. sample mean: X = 1
n

∑
iXi,

3. sample variance: S2 = 1
n−1

∑
i(Xi − x)2,

4. sample median: middle value of ordered statistics,

5. sample minimum: X(1)

6. sample maximum: X(n).
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3 Sufficient Statistics and Data Reduction

Now we will talk about a special class of statistics called sufficient statistics. There are two
ways to motivate sufficient statistics: the data reduction viewpoint where we would like to
discard non-informative pieces of the dataset (for storage or other benefits), and the risk
reduction viewpoint where we want to construct estimators that only depend on meaningful
variation in the data. We will focus on the former viewpoint today.

The goal in data reduction roughly is to find ways to reduce the size of a dataset without
throwing away important information. We need to fix ideas more concretely to make progress
on this abstract question.

We focus on parametric models and suppose we observe samples

X1, . . . , Xn ∼ p(x; θ).

The typical statistical estimation problem is that we observe the samples as want to un-
derstand something about the unknown parameter θ. The goal of data reduction is to find
statistics T (X1, . . . , Xn) that contain all the information about the unknown parameter θ.

Sufficient Statistic: A statistic T (X1, . . . , Xn) is said to be sufficient for the parameter
θ if p(x1, . . . , xn|T (X1, . . . , Xn) = t; θ) does not depend on θ.

Once we know the value of the sufficient statistic, the joint distribution no longer has any
more information about the parameter θ. One could imagine keeping only T (X1, . . . , Xn)
and throwing away all the data. Take this loose interpretation with a grain of salt - we will
return to it.

There is another more subtle question about what it means to condition on the sufficient
statistic when it comes from a continuous distribution (since typically the conditioning set
will have zero probability). It turns out that one can salvage this using something called the
factorization theorem (which we will come to shortly). For now however, you should think
about the discrete case and suppose that the probability that T (X1, . . . , Xn) = t is strictly
positive.

Poisson sufficient statistics: X1, · · · , Xn ∼ Poisson(θ). Let T =
∑n

i=1Xi.

Then,

pθ(X1 = x1, . . . , Xn = xn|T = t) =
pθ(X1 = x1, . . . , Xn = xn, T = t)

pθ(T = t)
.

There are two possibilities, that the sum of the xis is equal to t and that the sum is not
equal to t. In the latter case the probability is zero so we obtain,

pθ(X1 = x1, . . . , Xn = xn, T = t)

pθ(T = t)
=
pθ(X1 = x1, . . . , Xn = xn)I(T = t)

pθ(T = t)
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The sum of n independent Poissons with parameter θ is Poisson with parameter nθ so we
obtain,

pθ(X1 = x1, . . . , Xn = xn)I(T = t)

pθ(T = t)
=

exp(−nθ)θ
∑n

i=1 xiI(T = t)(
∑n

i=1 xi)!

[
∏n

i=1(xi)!] exp(−nθ)(nθ)
∑n

i=1 xi

=
I(T = t)t!

[
∏n

i=1(xi)!]n
t
,

which does not depend on θ. So we can conclude that T (X1, . . . , Xn) =
∑n

i=1Xi is a
sufficient statistic. You can similarly verify that the average is sufficient, and that 3.7

∑n
i=1Xi

is sufficient. Furthermore, you can always condition on more things without destroying
sufficiency so that (

∑n
i=1Xi, X1, X17) is also sufficient.

In some sense we might believe that the sum is a better sufficient statistic than (
∑n

i=1Xi, X1, X17).
We will return to this idea of “minimal sufficient statistics” in the next class.

Binomial sufficient statistics: Suppose we observe X1, . . . , Xn ∼ Ber(θ), then once
again we can verify that the sum is sufficient. This proceeds in exactly the same way, i.e.

p(X1 = x1, . . . , Xn = xn|T = t) =
p(X1 = x1, . . . , Xn = xn, T = t)

p(T = t)

=
I(T = t)θt(1− θ)n−t(

n
t

)
θt(1− θ)n−t

=
I(T = t)(

n
t

) ,

which does not depend on θ.

3.1 Sufficient Statistics - The Partition Viewpoint

It is better to describe sufficiency in terms of partitions of the sample space.

Example 1 Let X1, X2, X3 ∼ Bernoulli(θ). Let T =
∑
Xi.
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(x1, x2, x3) t p(x|t)
(0, 0, 0) → t = 0 1
(0, 0, 1) → t = 1 1/3
(0, 1, 0) → t = 1 1/3
(1, 0, 0) → t = 1 1/3
(0, 1, 1) → t = 2 1/3
(1, 0, 1) → t = 2 1/3
(1, 1, 0) → t = 2 1/3
(1, 1, 1) → t = 3 1

8 elements → 4 elements

1. A partition B1, . . . , Bk is sufficient if f(x|X ∈ B) does not depend on θ.

2. A statistic T induces a partition. For each t, {x : T (x) = t} is one element of the
partition. T is sufficient if and only if the partition is sufficient.

3. Two statistics can generate the same partition: example:
∑

iXi and 3
∑

iXi.

4. If we split any element Bi of a sufficient partition into smaller pieces, we get another
sufficient partition.

Example 2 Let X1, X2, X3 ∼ Bernoulli(θ). Then T = X1 is not sufficient. Look at its
partition:

(x1, x2, x3) t p(x|t)
(0, 0, 0) → t = 0 (1− θ)2
(0, 0, 1) → t = 0 θ(1− θ)
(0, 1, 0) → t = 0 θ(1− θ)
(0, 1, 1) → t = 0 θ2

(1, 0, 0) → t = 1 (1− θ)2
(1, 0, 1) → t = 1 θ(1− θ)
(1, 1, 0) → t = 1 θ(1− θ)
(1, 1, 1) → t = 1 θ2

8 elements → 2 elements

4 The Factorization Theorem

Checking the definition of sufficiency directly is often a tedious exercise since it involves
computing the conditional distribution. A much simpler characterization of sufficiency comes
from what is called the Neyman-Fisher factorization criterion.
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Theorem 3 T (X1, . . . , Xn) is sufficient for θ if and only if the joint pdf/pmf of (X1, . . . , Xn)
can be factored as

p(x1, . . . , xn; θ) = h(x1, . . . , xn)× g(T (x1, . . . , xn); θ).

This version does not involve conditioning and thus typically makes sense even when X has
a continuous distribution. Let us consider an example of this.

Example 4 X1, . . . , Xn ∼ N(µ, σ2). Then

p(x1, . . . , xn;µ, σ2) =

(
1

2πσ2

)n
2

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
.

(a) If (µ, σ2) unknown then we can write the joint as:

p(x1, . . . , xn;µ, σ2) =

(
1

2πσ2

)n
2

exp

{
− 1

2σ2

(
n∑
i=1

x2i − 2µ
n∑
i=1

xi + nµ2

)}
,

so that T = (
∑n

i=1 x
2
i ,
∑n

i=1 xi) is sufficient using the factorization theorem.

(b) If σ is known: we can add and subtract the sample mean x in the exponent and use the
fact that,

∑n
i=1(xi − x) = 0 to see that,

p(x1, . . . , xn;µ) =

(
1

2πσ2

)n
2

exp

{
−
∑

(xi − x)2

2σ2

}
︸ ︷︷ ︸

h(xn)

exp

{
−n(x− µ)2

2σ2

}
︸ ︷︷ ︸

g(T (xn)|µ)

.

Thus, using the factorization theorem X is sufficient for µ.

The factorization theorem is relatively straightforward to prove, at least in the discrete case.

Proof: Factorization =⇒ sufficiency:

p(x1, . . . , xn|T = t; θ) =
p(x1, . . . , xn, T = t; θ)

p(T = t; θ)

=
I(T (x1, . . . , xn) = t)h(x1, . . . , xn)× g(t; θ)∑

x1,...,xn:T (x1,...,xn)=t
h(x1, . . . , xn)× g(t; θ)

=
I(T (x1, . . . , xn) = t)h(x1, . . . , xn)∑

x1,...,xn:T (x1,...,xn)=t
h(x1, . . . , xn)

,

which does not depend on θ.

Sufficiency =⇒ factorization: We simply define g(t; θ) = p(T = t; θ), and h(x1, . . . , xn) =
p(x1, . . . , xn|T = t; θ), where by sufficiency we note that the latter function does not depend
on θ. Now, it is straightforward to verify that factorization theorem holds.
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5 The likelihood and its relationship to sufficiency

The likelihood function arises from viewing the joint density as a function of the unknown
parameter θ, i.e.

L(θ) = L(θ;x1, . . . , xn) = p(x1, . . . , xn; θ).

The likelihood is central in computing point estimates (maximum likelihood estimation) and
Bayesian inference. We will return to these.

Some important points to remember:

1. The likelihood is a function of θ, it is not a probability.

2. Typically we ignore constants that do not depend on θ when computing the likelihood,
i.e. we care only about the relative value of the likelihood as a function of θ. More
formally, the likelihood is only defined upto a constant of proportionality, i.e. it is an
equivalence class of functions.

3. The likelihood in the i.i.d. case has the form:

L(θ) =
n∏
i=1

p(xi; θ),

and in this case we often will find it convenient to work with the log-likelihood:

LL(θ) =
n∑
i=1

log p(xi; θ).

Relationship to sufficiency: Using the factorization theorem we can see that for any
sufficient statistic T , we can write the likelihood as:

L(θ) = g(T (x1, . . . , xn); θ)h(x1, . . . , xn),

and noting once again that the likelihood is only defined upto constants that do not depend
on θ, we can simply ignore the h(x1, . . . , xn) term, i.e. we can define the likelihood as:

L(θ) = g(T (x1, . . . , xn); θ).

Thus, once we have any sufficient statistic, we have everything we need to compute the
likelihood function. If we were to base our subsequent data analysis only on the likelihood
function then we have lost nothing. We will see a further connection between sufficiency and
the likelihood function once we define the notion of minimal sufficiency.
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