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Today we will continue our discussion on sufficiency.

1 Minimal sufficiency

As we have seen previously sufficient statistics are not unique. Furthermore, it seems, at
least intuitively, that some sufficient statistics present much more reduction than others. For
example, suppose that X1, . . . , Xn ∼ N(µ, 1). Then Xn is a sufficient statistic. But so is the
whole data set. This motivates the following definition of minimal sufficient statistics:

Minimal Sufficiency: A statistic T (x1, . . . , xn) is minimal sufficient if it is sufficient,
and furthermore for any other sufficient statistic S(x1, . . . , xn) we can write T (x1, . . . , xn) =
g(S(x1, . . . , xn)), i.e. T is a function of S.

Theorem 1 Define

R(x1, . . . , xn, y1, . . . , yn; θ) =
p(y1, . . . , yn; θ)

p(x1, . . . , xn; θ)
.

Suppose that a statistic T has the following property:

R(x1, . . . , xn, y1, . . . , yn; θ) does not depend on θ if and only if T (y1, . . . , yn) =
T (x1, . . . , xn).

Then T is a MSS.

Before we prove the theorem let us consider some examples.

Example 2 Suppose that Y1, . . . , Yn are i.i.d Poisson (θ).

p(y1, . . . , yn; θ) =
e−nθθ

∑
yi∏

yi
,

p(y1, . . . , yn; θ)

p(x1, . . . , xn; θ)
=

θ
∑
yi−

∑
xi∏

yi!/
∏
xi!

which is independent of θ iff
∑
yi =

∑
xi. This implies that T (X1, . . . , Xn) =

∑n
i=1Xi is a

minimal sufficient statistic for θ.

The minimal sufficient statistic is not unique. But, the minimal sufficient partition is unique.
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Example 3 Cauchy.

p(x; θ) =
1

π(1 + (x− θ)2)
.

Then

p(y1, . . . , yn; θ)

p(x1, . . . , xn; θ)
=

n∏
i=1

{1 + (xi − θ)2}
n∏
j=1

{1 + (yj − θ)2}
.

The ratio is a constant function of θ if

T (X1, . . . , Xn) = (X(1), · · · , X(n)).

It is technically harder to show that the ratio is independent of θ only if T is the order
statistics, but it could be done using theorems about polynomials. Having shown this, one
can conclude that the order statistics are the minimal sufficient statistics for θ.

Proof: We prove this in two steps. We first show that T is a sufficient statistic and then
we check that it is minimal. We define the partition induced by T , as {At : t ∈ Range(T )}
and for each set in the partition At we associate a representative (xt1, . . . , xtn) ∈ At.

T is sufficient: We look at the joint distribution at any (x1, . . . , xn). Suppose that
T (x1, . . . , xn) = u, then consider (y1, . . . , yn) := (xu1, . . . , xun). Observe that, (y1, . . . , yn)
depends only on T (x1, . . . , xn), i.e. the point y is a function of the statistic T only. Now we
have that,

p(x1, . . . , xn; θ) = p(y1, . . . , yn; θ)R(y1, . . . , yn, x1, . . . , xn; θ),

and since T (x1, . . . , xn) = T (y1, . . . , yn), R does not depend on θ. Recalling that (y1, . . . , yn)
is only a function of T (x1, . . . , xn) we have that,

p(x1, . . . , xn; θ) = g(T (x1, . . . , xn); θ)h(x1, . . . , xn),

where g corresponds to the first term and h corresponds to the R term. We conclude that
T is sufficient.

T is minimal: As a preliminary we note that the definition of a minimal sufficient statistic
could be equivalently written as: T is a MSS if for any other sufficient statistic S, if we have
that S(x1, . . . , xn) = S(y1, . . . , yn) then we also have that T (x1, . . . , xn) = T (y1, . . . , yn).
This is equivalent to the statement that T is a function of S.

Consider, any other sufficient statistic S. Suppose that, S(x1, . . . , xn) = S(y1, . . . , yn), then
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by the factorization theorem we have that,

p(x1, . . . , xn; θ) = g(S(x1, . . . , xn); θ)h(x1, . . . , xn)

= g(S(y1, . . . , yn); θ)h(y1, . . . , yn)
h(x1, . . . , xn)

h(y1, . . . , yn)

= p(y1, . . . , yn; θ)
h(x1, . . . , xn)

h(y1, . . . , yn)
,

so we have that R(x1, . . . , xn, y1, . . . , yn; θ) does not depend on θ. So we conclude that
T (x1, . . . , xn) = T (y1, . . . , yn) and so T is minimal.

2 Minimal sufficiency and the likelihood

Although minimal sufficient statistics are not unique they induce a unique partition on the
possible datasets. This partition is also induced by the likelihood.

Lemma 4 Suppose we have a partition such that (x1, . . . , xn) and (y1, . . . , yn) are placed in
the same set of the partition iff L(θ;x1, . . . , xn) ∝ L(θ; y1, . . . , yn), then the partition is the
minimal sufficient partition.

You will prove this on your homework but it is a simple consequence of the characterization
we have seen in the previous section.

3 Sufficiency - the risk reduction viewpoint

We will return to the concept of risk more formally in the next few lectures, but for now let
us try to understand the main ideas.

Setting: Suppose we observe X1, . . . , Xn ∼ p(x; θ) and we would like to estimate θ, i.e. we
want to construct some function of the data that is close in some sense to θ. We construct
an estimator θ̂(X1, . . . , Xn). In order to evaluate our estimator we might consider how far
our estimate is from θ on average, i.e. we can define

R(θ̂, θ) = E(θ̂ − θ)2.

We will see this again later on but the risk of an estimator can be decomposed into its bias
and variance, i.e.

E(θ̂ − θ)2 = (Eθ̂ − θ)2 + E(θ̂ − Eθ̂)2,
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where the first term is referred to as the bias and the second is the variance.

There is a strong sense in which estimators which do not depend only on sufficient statistics
can be improved. This is known as the Rao-Blackwell theorem.

Let θ̂ be an estimator. Let T be any sufficient statistic and define θ̃ = E[θ̂|T ].

Rao-Blackwell theorem:

R(θ̃, θ) ≤ R(θ̂, θ).

We will not spend too much time on this but lets see a quick example and then prove the
result.

Example: Suppose we toss a coin n times, i.e. X1, . . . , Xn ∼ Ber(θ). We consider the
estimator:

θ̂ = X1,

and the sufficient statistic T =
∑n

i=1Xi, then

θ̃ = E[X1|T ] = E
[
X1

∣∣∣ ∑
i

Xi

]
.

We claim that the conditional expectation is simply the average, i.e.

θ̃ =
1

n

n∑
i=1

Xi.

First, let us check this in the case when n = 2. If X1 + X2 = 2 then X1 = 1, and if
X1 +X2 = 0, X1 = 0. In the case, when X1 +X2 = 1, we have X1 = 1 with probability 1/2
and 0 with probability 1/2. So we conclude the conditional expectation is (X1 +X2)/2.

More generally, if we have
∑
Xi = k, then of the

(
n
k

)
equally likely possibilities we have that

X1 = 1 for
(
n−1
k−1

)
of them so that the conditional expectation is simply:

E
[
X1

∣∣∣ ∑
i

Xi = k
]

=

(
n−1
k−1

)(
n
k

) =
k

n
= Xn.

We observe that both estimators are unbiased (have mean equal to θ) but the variance of
the Rao-Blackwellized estimator is θ(1−θ)/n as opposed to the original estimator which has
variance θ(1− θ).

Proof of Rao-Blackwell: Observe that,

R(θ̃, θ) = E[(E[θ̂|T ]− θ)2] = E[(E[θ̂ − θ|T ])2] ≤ E[E[(θ̂ − θ)2|T ]] = R(θ̂, θ).

The inequality is Jensen’s inequality (equivalently just Var(X) = E[X2]− (E[X])2 ≥ 0).

A question worth pondering is: why does it matter for Rao-Blackwellization that T is a
sufficient statistic?

4


