
Lecture Notes 12
36-705

Today we will discuss a special type of statistical model called aan exponential family.

1 Exponential Families

A family {Pθ} of distributions forms an s-dimensional exponential family if the distributions
Pθ have densities of the form:

p(x; θ) = exp

[
s∑
i=1

ηi(θ)Ti(x)− A(θ)

]
h(x),

where ηi, A are functions which map θ to R. You can check that (T1(x), . . . , Ts(x)) is a
sufficient statistic. The term A(θ) is known as the log-normalization constant or the log-
partition function. Let X be the set of possible values of x.

Remark: You can ignore this: As a technical note, exponential families can be defined with
respect to the Lebesgue measure (as we did implicitly above) or with respect to any other
measure (for instance, the discrete measure on {1, . . . , k}). We will continue to simply think
of X as a subset of R and the measure as the Lebesgue measure.

Although thinking of the above form is standard, it is usually much more convenient to
parametrize the distribution in what is known as its canonical parametrization, where we
simply take ηi(θ) to be the parameters. In this case, we can more compactly write:

p(x; θ) = exp

[
s∑
i=1

θiTi(x)− A(θ)

]
h(x).

In this case, we refer to θ as the natural parameters of the distribution. Notice that none of
these parametrizations are unique, we can replace Ti by cTi and θi by θi/c and obtain the
same distribution.

The term A(θ) is what makes the distribution integrate to 1, i.e.

A(θ) = log

[∫
X

exp

[
s∑
i=1

θiTi(x)

]
h(x)dx

]
.

The set of θs for which A(θ) <∞ constitute the natural parameter space.

Several distributions you have or will encounter are exponential family distributions (Wikipedia
has a long list). We will do a couple of examples here.
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Example 1: The Normal family of distributions has density,

p(x; θ) =
1√

2πσ2
exp

(
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2

)
,

which is a 2-parameter exponential family, with natural parameters (θ1, θ2) =
(
µ
σ2 ,

−1
2σ2

)
, and

sufficient statistics (x, x2). One can verify that the natural parameter space is R× (−∞, 0).

Discrete distributions can similarly belong to an exponential family (you have to replace all
the integrals with sums and so on).

Example 2: The Binomial distribution has pmf,

p(x; θ) =

(
n

x

)
px(1− p)n−x, x ∈ {0, 1, . . . , n}.

We can re-write this as:

p(x; θ) =

(
n

x

)
exp

(
x log

p

1− p
+ n log(1− p)

)
, x ∈ {0, 1, . . . , n}.

This shows that it is in an exponential family with sufficient statistic x (number of successes),
and natural parameter,

θ = log

(
p

1− p

)
.

Example 3: The Poisson(λ) distribution has pmf,

p(x; θ) =
exp(−λ)λx

x!
=

1

x!
exp(x log λ− λ),

which shows that it is an exponential family with sufficient statistic x, and natural parameter
θ = log(λ).

Wikipedia has a long list of exponential family distributions, their natural parameters, suffi-
cient statistics and other useful information. It is good practice to try to derive the natural
parameters for some popular distributions.

2 Properties of Exponential Families

2.1 Random sampling

The exponential family structure is preserved for an i.i.d. sample, i.e. if {X1, . . . , Xn} are
i.i.d from some exponential family distribution p(x; θ) then the joint distribution:

p(x1, . . . , xn; θ) =
n∏
i=1

h(xi) exp

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
,
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is in an exponential family with the same natural parameters but with sufficient statistics:

Ti(x1, . . . , xn) =
n∑
j=1

Ti(xj).

2.2 Log-partition generates moments

Recall that,

A(θ) = log

[∫
X

exp

[
s∑
i=1

θiTi(x)

]
h(x)dx

]
,

so taking the derivatives of A with respect to θ we obtain that,

∂A(θ)

∂θi
=

∫
X Ti(x) exp [

∑s
i=1 θiTi(x)]h(x)dx[∫

X exp [
∑s

i=1 θiTi(x)]h(x)dx
]

= E[Ti(X)].

You might wonder why we can switch derivatives and integrals - this is done rigorously using
the dominated convergence theorem. Similarly, you can easily verify that higher derivatives
lead to (functions of) higher moments (technically cumulants and not moments), i.e.

∂2A(θ)

∂θi∂θj
= E[(Ti(X)− E[Ti(X)])(Tj(X)− E[Tj(X)])] = cov(Ti(X), Tj(X)).

This is why the function A(θ) is classically known as the cumulant function.

This latter property also reveals that A is a convex function of θ, i.e. it is bowl-shaped.
Convexity is implied by the fact that the second-derivative matrix (i.e. the Hessian matrix)
is positive semi-definite. For exponential families, the Hessian matrix is the covariance
matrix of the sufficient statistics Ti, and covariance matrices are always positive semi-definite.
Remember the conclusion: A is a convex function of θ.

2.3 The likelihood function in exponential families

When we observe a random sample X1, . . . , Xn ∼ p(x; θ) from an exponential family distri-
bution, the log-likelihood function is:

L(θ;x1, . . . , xn) ∝

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
.

The log-likelihood function in an exponential family is concave. To see this compute the
Hessian of L(θ;x1, . . . , xn) and observe that this is −n times the Hessian of A. Since A is
convex, its negation is concave.
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2.4 Minimal representations and minimal sufficiency

An exponential family representation is said to be minimal if the sufficient statistics are not
redundant, i.e. there is no set of coefficients a ∈ Rs, a 6= 0 such that,

s∑
i=1

aiTi(x) = const,

for all x ∈ X . If the representation is not minimal then essentially one can eliminate some
of the sufficient statistics from the representation to obtain a minimal representation. Non-
minimal exponential families are sometimes called over-complete exponential families. Over-
complete exponential families are not statistically identifiable (while minimal ones are), i.e.
there can be two different parameter vectors θ1 6= θ2, such that, p(X; θ1) = p(X; θ2). This
effectively means, even if I gave you infinite data from the model, you cannot meaningfully
estimate the parameter θ.

An exponential family where the space of allowed parameters θi is s-dimensional is called a
full-rank family. On the other hand if there are relationships between the θi (for instance,
θ2 = θ21) then the exponential family is curved.. For a full-rank exponential family, the
sufficient statistics turn out to be minimal sufficient, i.e. the statistic

T (X1, . . . , Xn) =

(
n∑
i=1

T1(Xi), . . . ,
n∑
i=1

Ts(Xi)

)
,

is minimal sufficient.

We have been discussing the canonical parametrization of exponential families. It turns
out that an equivalent way to parameterize the distribution is via what are called its mean
parameters. We will not show this equivalence (it is not difficult) but rather just introduce
the terminology here. Suppose we define:

µi = E[Ti(X)] =

∫
x∈X

Ti(x) exp

[
s∑
i=1

ηi(θ)Ti(x)− A(θ)

]
h(x)dx,

then it turns out that the collection (µ1, . . . , µs) is in 1-1 correspondence with the natural
parameters of the exponential family.

2.5 The maximum entropy duality

The classical motivation for exponential families comes from what is called the principle
of maximum entropy. The idea is that, we suppose that we are given a random sample
{X1, . . . , Xn} from some distribution, and we compute the empirical expectations of certain
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functions that we choose:

µ̂i =
1

n

n∑
j=1

Ti(Xj) for i ∈ {1, . . . , s}.

For simplicity, you could imagine the case when T (X) = (X,X2, . . . , Xs), i.e. where the
statistics we are interested in are just moments, but everything we are discussing is much
more general. Based on just these empirical expectations we want to infer a full probability
distribution on the samples. A distribution p is consistent with the data we observe if it is
the case that,

µ̂i = Ep[Ti(X)] for i ∈ {1, . . . , s}.

We of course would like to pick a consistent distribution. It turns out that in most interesting
cases, if we constrain a small number of statistics in this fashion there are infinitely many
consistent distributions, so we need to come up with a way to choose between them.

The principle of maximum entropy suggests to pick the distribution that has the largest
(Shannon) entropy. The entropy of a distribution is:

H(p) = −
∫
p(x) log(p(x))dx.

Roughly, the entropy measures the complexity of a distribution (i.e. the average number of
bits needed to encode samples from a distribution). The principle of maximum entropy says
that one should be “maximally agnostic” about all aspects of the distribution that are not
explicitly constrained. If this does not make sense, then just think about the principle as
giving a possibly “natural” way to choose a distribution from a collection.

So we could imagine trying to find the distribution p∗ that,

p∗ = arg max
p
H(p)

subject to the constraints that,

µ̂i = Ep[Ti(X)] for i ∈ {1, . . . , s}.

The solution to this problem can shown to have the form

p∗(x) = exp

[
s∑
i=1

θiTi(x)− A(θ)

]
h(x).

This provides a motivation for exponential families.
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2.6 Bregman Divergences and KL Divergences

Given a (strictly) convex function A we can define a divergence between parameters by:

ρ(θ1, θ2) = A(θ2)− A(θ1)− 〈A(θ1), θ2 − θ1〉.

For a pair of distributions we can define the KL divergence (assuming everything below is
finite):

KL(p, q) =

∫
p(x) log(p(x)/q(x))dx.

It is easy to see that for exponential families – the Bregman divergence between parameters
(using the log-partition as the convex function) is exactly equal to the KL divergence between
the corresponding distributions.

3 Parameter Estimation

We will discuss parameter estimation in great detail soon. But we introduce some of the
ideas here in the context of exponential families.

One of the dominant strategies of parameter estimation is maximum likelihood: choose the
estimate θ̂ to be the value of θ that maximizes the likelihood function. We have seen that
the likelihood in an exponential family is concave and given by

L(θ;x1, . . . , xn) ∝

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
,

so we can simply take the derivative with respect to θ and set this equal to 0. Using the
facts we have seen earlier about the derivative of A, we can see that this amounts to solving
the following system of equations for θ:

Eθ[Ti(X)] =
1

n

n∑
j=1

Ti(xj) for i ∈ {1, . . . , s}

where

Eθ[Ti(X)] =

∫
Ti(x)pθ(x)dx.

So the maximum likelihood estimator simply picks the parameters θ to match the empirical
expectations of the sufficient statistics to the expected value of the sufficient statistics under
the distribution.
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Usually we cannot compute this estimator in closed form so we use an iterative algorithm
(like gradient ascent) to maximize the likelihood. Since exponential families have concave
likelihoods this is usually a tractable problem.

Another way to estimate parameters of a distribution is known as the method of moments.
Here the idea is to pick some statistics of the data, and the try to find parameters for your
distribution so that the empirical average of the statistics are equal to their expected values
under the estimated model. For exponential families as we can see above these two methods
of estimation coincide.
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