
Lecture Notes 13
36-705

Today we will discuss point estimation. Given X1, . . . , Xn ∼ p(X; θ) we would like to con-

struct an estimator θ̂(X1, . . . , Xn) of θ = (θ1, . . . , θk). An estimator

θ̂ = θ̂n = w(X1, . . . , Xn)

is any function of the data. Keep in mind that the parameter is a fixed, unknown constant.
The estimator is a random variable.

In the next few lectures we will discuss ways to construct estimators and then we dicuss how
to compare or evaluate them. The questions we are trying to answer are:

1. Are there general purpose methods to come up with estimators of θ?

2. Given two (or more) estimators is there a general framework in which we can compare
estimators?

3. How do we analyze complex estimators (say estimators that are not simple averages)?

An “estimator” refers to a random variable (a statistic, a function of the sample) and an
“estimate” refers to its realized value. We have already studied estimation in a relatively
simple context: estimating the mean. When θ is not a mean then we need to think a bit
harder to decide how to estimate it. We will focus on general purpose methods for estimation.

For now, we will discuss three methods of constructing estimators:

1. The Method of Moments (MOM)

2. Maximum likelihood (MLE)

3. Bayes estimators.

Some Terminology. Throughout these notes, we will use the following terminology:

1. Eθ(θ̂) =
∫
· · ·
∫
θ̂(x1, . . . , xn)p(x1; θ) · · · p(xn; θ)dx1 · · · dxn.

2. Bias: Eθ(θ̂)− θ.

3. The distribution of θ̂n is called its sampling distribution.

4. The standard deviation of θ̂n is called the standard error denoted by se(θ̂n).

5. θ̂n is consistent if θ̂n
p→ θ. Later we will see that if bias → 0 and Var(θ̂n) → 0 as

n→∞ then θ̂n is consistent.
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1 The Method of Moments

Suppose that θ = (θ1, . . . , θk). Define

m1 =
1

n

n∑
i=1

Xi, µ1(θ) = E(Xi) =

∫
xpθ(x)dx

m2 =
1

n

n∑
i=1

X2
i , µ2(θ) = E(X2

i ) =

∫
x2pθ(x)dx

...
...

mk =
1

n

n∑
i=1

Xk
i , µk(θ) = E(Xk

i ) =

∫
xkpθ(x)dx.

Let θ̂ = (θ̂1, . . . , θ̂k) solve:

mj = µj(θ̂), j = 1, . . . , k.

In other words, we equate the first k sample moments with the first k theoretical moments.
This defines k equations with k unknowns.

Example 1 N(β, σ2) with θ = (β, σ2). Then µ1 = β and µ2 = σ2 + β2. Equate:

1

n

n∑
i=1

Xi = β̂,
1

n

n∑
i=1

X2
i = σ̂2 + β̂2

to get

β̂ = Xn, σ̂2 =
1

n

n∑
i=1

(Xi −Xn)2.

Example 2 Suppose
X1, . . . , Xn ∼ Binomial(k, p)

where both k and p are unknown. We get

kp = Xn,
1

n

n∑
i=1

X2
i = kp(1− p) + k2p2

giving

p̂ =
Xn

k
, k̂ =

X
2

n

Xn − 1
n

∑
i(Xi −Xn)2

.
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The method of moments was popular many years ago because it is often easy to compute.
Lately, it has attracted attention again. For example, there is a large literature on estimating
mixtures of Gaussians using the method of moments.

2 Maximum Likelihood

The most popular method for estimating parameters is maximum likelihood. One of the
reasons is that, under certain conditions, the maximum likelihood estimator is optimal.
We’ll discuss optimality later.

The maximum likelihood estimator (mle) θ̂ is defined as the maximizer of

L(θ) = p(X1, . . . , Xn; θ)
iid
=
∏
i

p(Xi; θ).

This is the same as maximizing the log-likelihood

`(θ) = logL(θ).

Often it suffices to solve
∂`(θ)

∂θj
= 0, j = 1, . . . , k.

Example 3 Binomial. L(p) =
∏

i p
Xi(1− p)1−Xi = pS(1− p)n−S where S =

∑
iXi. So

`(p) = S log p+ (n− S) log(1− p)

and p̂ = Xn.

Example 4 X1, . . . , Xn ∼ N(µ, 1).

L(µ) ∝
∏
i

e−(Xi−µ)2/2 ∝ e−n(Xn−µ)2 , `(µ) = −n
2

(Xn − µ)2

and µ̂ = Xn. For N(µ, σ2) we have

L(µ, σ2) ∝
∏
i

1

σ
exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}
and

`(µ, σ2) = −n log σ − 1

2σ2

n∑
i=1

(Xi − µ)2.
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Set
∂`

∂µ
= 0,

∂`

∂σ2
= 0

to get

µ̂ =
1

n

n∑
i=1

Xi, σ̂2 =
1

n

n∑
i=1

(Xi −X)2.

Example 5 Let X1, . . . , Xn ∼ Uniform(0, θ). Then

L(θ) =
1

θn
I(θ > X(n))

and so θ̂ = X(n).

What is the method of moments estimator above? How would you compare the two estima-
tors?

2.1 MLE and MoM for exponential families

The log-likelihood in an exponential family is concave and given by

`(θ;x1, . . . , xn) ∝

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
,

so we can simply take the derivative with respect to θ and set this equal to 0. Using the
facts we have seen in the last lecture about the derivative of A, we can see that this amounts
to solving the following system of equations for θ:

Ep(X;θ)[Ti(X)] =
1

n

n∑
j=1

Ti(xj) for i ∈ {1, . . . , s}.

So the maximum likelihood estimator simply picks the parameters θ to match the empirical
expectations of the sufficient statistics to the expected value of the sufficient statistics under
the distribution.

Usually we cannot compute this estimator in closed form so we use an iterative algorithm
(like gradient ascent) to maximize the likelihood. However, you should remember that
exponential families have concave likelihoods so this is usually tractable. For exponential
families as we can see above the method of moments coincides with the MLE (if we chose
the sufficient statistics to direct which moments to compute).
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Suppose that θ = (η, ξ). The profile likelihood for η is defined by

L(η) = sup
ξ
L(η, ξ).

To find the mle of η we can proceed in two ways. We could find the overall mle θ̂ = (η̂, ξ̂).

The mle for η is just the first coordinate of (η̂, ξ̂). Alternatively, we could find the maximizer
of the profile likelihood. These give the same answer. Do you see why?

2.2 Equivariance and the profile likelihood

The mle is equivariant. if η = g(θ) then η̂ = g(θ̂). Suppose g is invertible so η = g(θ) and
θ = g−1(η). Define L∗(η) = L(θ) where θ = g−1(η). So, for any η,

L∗(η̂) = L(θ̂) ≥ L(θ) = L∗(η)

and hence η̂ = g(θ̂) maximizes L∗(η). For non invertible functions this is still true if we
define L∗(η) to be the profile likelihood.

Example 6 Binomial. The mle is p̂ = Xn. Let ψ = log(p/(1−p)). Then ψ̂ = log(p̂/(1−p̂)).

3 Bayes Estimator

To define the Bayes estimator, we begin by treating θ as a random variable. This point
requires much discussion (which we will have later). For now, just tentatively think of θ as
random. We start with a prior distribution p(θ) on θ. Note that

p(x1, . . . , xn|θ)p(θ) = p(x1, . . . , xn, θ).

Now compute the posterior distribution by Bayes’ theorem:

p(θ|x1, . . . , xn) =
p(x1, . . . , xn|θ)p(θ)
p(x1, . . . , xn)

where

p(x1, . . . , xn) =

∫
p(x1, . . . , xn|θ)p(θ)dθ.

This can be written as

p(θ|x1, . . . , xn) ∝ L(θ)p(θ) = Likelihood × prior.

Now compute a point estimator from the posterior. For example:

θ̂ = E(θ|x1, . . . , xn) =

∫
θp(θ|x1, . . . , xn)dθ =

∫
θp(x1, . . . , xn|θ)p(θ)dθ∫
p(x1, . . . , xn|θ)p(θ)dθ

.
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Example 7 Let X1, . . . , Xn ∼ Bernoulli(θ). Let the prior be θ ∼ Beta(α, β). Hence

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

and

Γ(α) =

∫ ∞
0

tα−1e−tdt.

Set Y =
∑

iXi. Then

p(θ|X) ∝ θY (1− θ)n−Y︸ ︷︷ ︸
likelihood

× θα−1(1− θ)β−1︸ ︷︷ ︸
prior

∝ θY+α−1(1− θ)n−Y+β−1.

Therefore, θ|X ∼ Beta(Y + α, n− Y + β). The Bayes estimator is

θ̃ =
Y + α

(Y + α) + (n− Y + β)
=

Y + α

α + β + n
= (1− λ)θ̂mle + λ θ

where

θ =
α

α + β
, λ =

α + β

α + β + n
.

This is an example of a conjugate prior.

Example 8 Let X1, . . . , Xn ∼ N(µ, σ2) with σ2 known. Let µ ∼ N(m, τ 2). Then

E(µ|X) =
τ 2

τ 2 + σ2

n

Xn +
σ2

n

τ 2 + σ2

n

m

and

Var(µ|X) =
σ2τ 2/n

τ 2 + σ2

n

.

4 MSE

Now we discuss the evaluation of estimators. The mean squared error (MSE) is

Eθ(θ̂ − θ)2 =

∫
· · ·
∫

(θ̂(x1, . . . , xn)− θ)2p(x1; θ) · · · p(xn; θ)dx1 . . . dxn.

The bias is
B = Eθ(θ̂)− θ

and the variance is
V = Varθ(θ̂).
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Theorem 9 We have
MSE = B2 + V.

Proof: Let m = Eθ(θ̂). Then

MSE = Eθ(θ̂ − θ)2 = Eθ(θ̂ −m+m− θ)2

= Eθ(θ̂ −m)2 + (m− θ)2 + 2Eθ(θ̂ −m)(m− θ)
= Eθ(θ̂ −m)2 + (m− θ)2 = V +B2.

An estimator is unbiased if the bias is 0. In that case, the MSE = Variance. There is often
a tradeoff between bias and variance. So low bias can imply high variance and vice versa.

Example 10 Let X1, . . . , Xn ∼ N(µ, σ2). Then

E(X) = µ, E(S2) = σ2.

The MSE’s are

E(X − µ)2 =
σ2

n
, E(S2 − σ2)2 =

2σ4

n− 1
.

It is worth thinking about how one defines the MSE when θ is multivariate (as in the example
above), and what the analogous bias-variance decomposition is.

We would like to choose an estimator with small MSE. However, the MSE is a function of
θ. Later, we shall discuss minimax estimators, that use the maximum of the MSE over θ as
a way to compare estimators.

5 Unbiased estimators, Fisher Information, Cramér-

Rao

In the olden days, many people focused on unbiased estimators. More modern treatments
do not often emphasize this point of view since there are many known examples where a
small amount of bias can result in large reductions in variance.

With that said, there are still pieces of this classical theory that are useful. One of the
important pieces is the Cramér-Rao bound which provides a lower bound on the variance
of an unbiased estimator. In many problems, this bound will provide some at least heuris-
tic guidelines into the difficulty of an estimation problem. Later on in the course we will
talk about other ways of proving lower bounds that do not restrict attention to unbiased
estimators (i.e. we will discuss what are called minimax lower bounds).
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5.1 Fisher Information

The log-likelihood is

`(θ) =
n∑
i=1

log p(Xi; θ).

We can also define the gradient of this function, which is called the score function:

s(θ) = s(θ;X1, . . . , Xn) = ∇θ`(θ) =
n∑
i=1

∇θ log p(Xi; θ).

This gradient is a d-dimensional vector. The Fisher Information matrix is the expected outer
product of the score, i.e.:

I(θ) = E[s(θ)s(θ)T ].

The Fisher information matrix is a d × d matrix. Lets take a quick look at a couple of
examples:

Example 1: Suppose that X ∼ Ber(p), then the log-likelihood is given by:

`(p) = X log(p) + (1−X) log(1− p),

and the score is:

s(p) =
X

p
− 1−X

1− p
=

X − p
p(1− p)

.

We can then compute the Fisher information:

I(p) =
1

p2(1− p)2
E
[
(X − p)2

]
=

1

p(1− p)
.

Example 2: Suppose that X ∼ N(µ, σ2) where σ is known, then the log-likelihood is given
by:

`(µ) = − 1

2σ2
(X − µ)2,

so that the score is:

s(µ) =
X − µ
σ2

,

and the Fisher information is:

I(µ) = E
[

(X − µ)2

σ4

]
=

1

σ2
.
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An important property that we will use is that the score function has mean zero, i.e.

Eθ[s(θ)] =

∫
· · ·
∫
s(θ;x1, . . . , xn)pθ(x1, . . . , xn)dx1 · · · dxn = 0.

Proof: Notice that,

Eθ[s(θ)] =
n∑
i=1

∫
∇θ log p(xi; θ) np(x1, . . . , xn; θ)dx1dx2 . . . dxn

=
n∑
i=1

∫
∇θ log p(xi; θ) p(xi; θ)dxi

= n

∫
∇θ log p(x1; θ)p(x1; θ)dx1,

using the i.i.d. assumption several times. Under some regularity conditions we can switch
the derivative and integral so we obtain,∫

∇θ log p(x1; θ) p(x1; θ)dx1 =

∫
∇θp(x1; θ)

p(x1; θ)
p(x1; θ)dx1

= ∇θ

∫
p(x1; θ)dx1 = ∇θ1 = 0. �

One consequence of this property is that we can interpret the Fisher information matrix as
the covariance matrix of the score, i.e.

I(θ) = E
[
(s(θ)− E(s(θ)))(s(θ)− E(s(θ)))T

]
.

You should check that the following holds:

I(θ) = nI1(θ)

where I1(θ) is the Fisher information based on one observation.

Lemma 11 The Fisher information satisfies

I1(θ) = −E
[
∇2
θ log p(X; θ)

]
.

Proof. To see this observe that,

∇2
θ log p(X; θ) = ∇θ

∇θp(X; θ)

p(X; θ)

=
∇2
θp(X; θ)

p(X; θ)
− (∇θp(X; θ)∇θp(X; θ)T )

p(X; θ)2

=
∇2
θp(X; θ)

p(X; θ)
− s(θ)s(θ)T .
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Now, notice that,

E
[
∇2
θp(X; θ)

p(X; θ)

]
=

∫
∇2
θp(X; θ) = ∇2

θ

∫
p(X; θ) = ∇2

θ1 = 0,

which yields the result. �

The Fisher information is measuring the expected curvature of the log-likelihood function
around the point θ. As we will see in future lectures if the log-likelihood is more curved (i.e.
I(θ) is appropriately “large”) then θ is easier to estimate.

Example 3: Let X1, . . . , Xn ∼ Ber(p). Then

I(p) =
n

p(1− p)
.

Example 4: For exponential families we have seen that the log-likelihood is given as:

`(θ;X1, . . . , Xn) =
s∑
i=1

θi

n∑
j=1

Ti(Xj)− nA(θ),

so the Hessian is:

I(θ) = n∇2
θA(θ) = nE

[
(T (X)− E[T (X)])(T (X)− E[T (X)])T

]
,

so the Fisher information matrix is n times the Hessian of the log-partition function or
alternatively it is the covariance matrix of the vector of sufficient statistics.

5.2 Cramér-Rao Bound

Let us briefly consider again the Bernoulli example. We observe X1, . . . , Xn ∼ Ber(p) and
estimate p̂ = 1

n

∑n
i=1Xi. The estimator is unbiased and has variance p(1 − p)/n which

is precisely the inverse of the Fisher information. This turns out to be a fairly general
phenomenon. Indeed, the Cramér-Rao bound assures us that this estimator is unimprovable
in a certain sense. We focus first on the univariate case (when θ ∈ R) and then consider the
multivariate extension.

Cramér-Rao Bound: Suppose that X1, . . . , Xn ∼ p(X; θ) and that θ̂ is an unbiased
estimator of θ. Then

Var(θ̂) ≥ 1

nI1(θ)
.
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Proof: Consider that,

cov(θ̂, s(θ)) = E((θ̂ − θ)s(θ)) = E(θ̂s(θ)),

since E[s(θ)] = 0. Furthermore,

E(θ̂s(θ)) =

∫
θ̂(x1, . . . , xn)∇θ log p(x1, . . . , xn; θ)p(x1, . . . , xn; θ)dx1 . . . dxn

=

∫
θ̂(x1, . . . , xn)

∇θp(x1, . . . , xn; θ)

p(x1, . . . , xn; θ)
p(x1, . . . , xn; θ)dx1 . . . dxn

=

∫
θ̂(x1, . . . , n) ∇θp(x1, . . . , xn; θ)dx1 · · · dxn

= ∇θ

∫
θ̂(x1, . . . , n) p(x1, . . . , xn; θ)dx1 · · · dxn = ∇θ θ = 1.

Notice that for any fixed ζ we can write:

Var(θ̂ − ζs(θ)) = Var(θ̂) + ζ2Var(s(θ))− 2ζcov(θ̂, s(θ)) = Var(θ̂) + ζ2nI1(θ)− 2ζ.

Using the fact that variances are positive we can write:

Var(θ̂) ≥ 2ζ − ζ2nI1(θ)

Take ζ = 1/(nI1(θ)) to obtain the Cramér-Rao bound.

Multivariate Generalization: The Cramér-Rao bound can be derived for a multivariate
parameter θ in a very similar fashion. For any two positive semi-definite matrices A and B
write

A � B

to mean that
vTAv ≥ vTBv

for any vector v. The multivariate Cramer-Rao bound is

Var(θ̂) � I(θ)−1 =
1

n
I1(θ)

−1.

Examples: In both the Gaussian and Bernoulli models, as a consequence of the Cramér-
Rao bound we can conclude that the MLE is the best unbiased estimator.

6 Beyond unbiased estimators: Decision theory

The central idea in decision theory is that we want to minimize our expected loss. Let
X1, . . . , Xn ∼ p(X; θ), with θ ∈ Θ. We choose a loss function L(a, θ) which measures how
far a point a is from θ. Some common loss functions are:
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1. Squared loss: L(a, θ) = (a− θ)2.

2. Absolute loss: L(a, θ) = |a− θ|.

There are however many other loss functions. For instance, we sometimes consider losses
like:

L(a, θ) =
(a− θ)2

|θ|+ 1
,

which penalizes errors in estimation more for small values of θ than for large values. We can
similarly design a loss function that penalizes errors more strongly for large values of θ.

Another important point is that there are cases when we do not really care about estimating
the parameter well but rather just the distribution p(x; θ). This is true when we care about
prediction in regression or in density estimation. In this case we could define the loss between
θ and a in terms of the distributions p(x; θ) and p(x; a). One canonical example is:

Kullback-Leibler loss:

L(a, θ) = KL(p(x; θ), p(x; a)) =

∫
p(x; θ) log

(
p(x; θ)

p(x; a)

)
dx.

Once we have a loss function, and an estimator, we can assess the estimator via its expected
loss. This expected loss is called the risk of the estimator. Suppose we consider an estimator
θ̂ = θ̂(X1, . . . , Xn); the risk is

R(θ, θ̂) = EθL(θ̂, θ).

Ideally, we would like to find an estimator θ̂ such that for any other estimator θ′ we have
that:

R(θ, θ̂(X)) ≤ R(θ, θ′)

for all values θ. Such estimators will most often not exist – why not? So we will need to find
another way to define an optimal estimator.
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