
Lecture Notes 16
36-705

Today we will switch gears and talk about hypothesis testing. But before we do, there is
one last, important fact about point estimation: the optimality of the mle. It’s complicated
to make this precise. (See Asymptotic Statistics by van der Vaart for a good treatment.)

1 The MLE is Optimal

Roughly, it goes like this. We know that mle satisfies

√
n(θ̂ − θ) N

(
0,

1

I(θ)

)
.

If θ̃ is any other well-behaved estimators, then

√
n(θ̃ − θ) N(0, σ2)

where σ2 ≥ 1/I(θ). The phrase “well-behaved” refers to some desirable technical conditions
on the estimator. Thus, the mle is the most precise estimator. Similarly, it can be shown
that the mle is asymptotically minimax under a large class of loss functions. Unfortunately,
making all this precise takes machinery that is beyond the scope of the course. But the
message is just that there are good reasons for using the mle in parametric problems. In
nonparametric problems, we shall see that the situation is quite different.

1.1 Notation

We will need the following notation. Let Φ be the cdf of a standard Normal random variable
Z. For 0 < α < 1, let

zα = Φ−1(1− α).

Hence,
P (Z > zα) = α and P (Z < −zα) = α.

Sometimes we will write Xn to mean (X1, . . . , Xn).

2 Hypothesis Testing

The classical statistical hypothesis testing framework (as with much of statistics) originated
with Fisher.
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Example 1: The story goes that a colleague of Fisher claimed to be able to distinguish if
in an English tea, milk was added before water (or the other way around). Fisher proposed
to give her 8 cups of tea, 4 of which had milk first, and 4 of which had tea first in a
random order. The point was roughly, that if she was “labeling” at random then she would
have a small chance 1/

(
8
4

)
= 1/70 = 0.014 of getting every cup right. In his description,

the null hypothesis was that she had no ability to distinguish. She actually got them all
correct, which would have happened by chance with probability 0.014. He concluded that
since this probability was less that 0.05 that it was “statistically significant”. Notice the
asymmetry in this description: only a null hypothesis is actually specified (i.e. there is no
alternative hypothesis – it is in some sense implicit), i.e. the null hypothesis is often special.
Furthermore, there is an arbitrary choice of a cut-off 0.05 below which we declare something
is significant.

Hypothesis testing is really everywhere. It would probably alarm you to know how many
policy decisions, nutrition decisions, scientific results live or die on the basis of hypothesis
tests.

Exaample 2. In July, Castillo et al reported on a study about treating Covid with Vitamin
D. 76 patients were randomized to treatment or no treatment. The outcome was whether
they needed to be put in the ICU or not. The null hypothesis that there is no value in using
Vitamin D had a p-value less than .001.

Example 3: A couple of typical examples to emphasize again why the null might really be
special. A common example is in forensics. Things like fingerprint matches, DNA matches,
deciding whether pieces of glass match in their chemical composition etc. are actually prob-
lems of a statistical nature. Here perhaps following the “innocent till proven guilty” adage,
the null hypothesis is that the defendant is innocent. We then need to review evidence and
choose to either reject or fail to reject (i.e. acquit) the defendant. It is perhaps clear that
there in many cases is a heavier price for false convictions and so it makes sense to control
this error. Indeed, deciding how to choose a significance level in this context is a huge debate.

3 The formal framework

Let X1, . . . , Xn ∼ p(x; θ). Suppose we want to know if θ = θ0 or not, where θ0 is a specific
value of θ. For example, if we are flipping a coin, we may want to know if the coin is fair;
this corresponds to θ = 1/2. If we are testing the effect of two drugs — whose means effects
are θ1 and θ2 — we may be interested to know if there is no difference, which corresponds
to θ1 − θ2 = 0.

We formalize this by stating a null hypothesis H0 and an alternative hypothesis H1. For
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example:
H0 : θ = θ0 versus θ 6= θ0.

More generally, consider a parameter space Θ. We consider

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

where Θ0 ∩Θ1 = ∅. If Θ0 consists of a single point, we call this a simple null hypothesis. If
Θ0 consists of more than one point, we call this a composite null hypothesis.

Example 1 X1, . . . , Xn ∼ Bernoulli(p).

H0 : p =
1

2
H1 : p 6= 1

2
. �

The question is not whether H0 is true or false. The question is whether there is sufficient
evidence to reject H0, much like a court case. Our possible actions are: reject H0 or retain
(don’t reject) H0.

Decision
Retain H0 Reject H0

H0 true
√

Type I error
(false positive)

H1 true Type II error
√

(false negative)

4 Constructing Tests

Hypothesis testing involves the following steps:

1. Choose a test statistic Tn = Tn(X1, . . . , Xn).

2. Choose a rejection region R ⊂ X n. Often this has the form

R =
{

(x1, . . . , xn) : Tn(x1, . . . , xn) > t
}

for some t.
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3. If (X1, . . . , Xn) ∈ R we reject H0 otherwise we retain H0.

Although you can define the rejection region without an associated test statistic, often it
will be the case that R will be defined in terms of the test statistic, i.e. we simply reject if
the test statistic takes an “extreme value”. We define the test function φ by:

φ(x1, . . . , xn) =

{
1 if (x1, . . . , xn) ∈ R
0 otherwise.

Example 2 Let X1, . . . , Xn ∼ Bernoulli(p). Suppose we test

H0 : p =
1

2
H1 : p 6= 1

2
.

Let Tn = n−1
∑n

i=1Xi and

R =

{
(x1, . . . , xn) : |Tn(x1, . . . , xn)− 1/2| > δ

}
.

So we reject H0 if |Tn − 1/2| > δ.

We need to choose T and R so that the test has good statistical properties. We will consider
the following tests:

1. The Neyman-Pearson Test

2. The Wald test

3. The Likelihood Ratio Test (LRT)

4. The permutation test.

Before we discuss these methods, we first need to talk about how we evaluate tests.

5 Error Rates and Power

Suppose we reject H0 when (X1, . . . , Xn) ∈ R. Define the power function by

β(θ) = Pθ((X1, . . . , Xn) ∈ R).

We want β(θ) to be small when θ ∈ Θ0 and we want β(θ) to be large when θ ∈ Θ1.
The general strategy is:
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1. Fix α ∈ [0, 1].

2. Now try to maximize β(θ) for θ ∈ Θ1 subject to β(θ) ≤ α for θ ∈ Θ0.

Notice the asymmetry that we always favor the null hypothesis and only consider tests that
control the Type-I error.

We need the following definitions. A test is size α if

sup
θ∈Θ0

β(θ) = α.

A test is level α if
sup
θ∈Θ0

β(θ) ≤ α.

A size α test and a level α test are almost the same thing. The distinction is made bcause
sometimes we want a size α test and we cannot construct a test with exact size α but we
can construct one with a smaller error rate.

Example 3 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose we test

H0 : θ = θ0, H1 : θ > θ0.

This is called a one-sided alternative. Suppose we reject H0 if Tn > c where

Tn =
Xn − θ0

σ/
√
n
.

Then

β(θ) = Pθ

(
Xn − θ0

σ/
√
n

> c

)
= Pθ

(
Xn − θ
σ/
√
n
> c+

θ0 − θ
σ/
√
n

)
= P

(
Z > c+

θ0 − θ
σ/
√
n

)
= 1− Φ

(
c+

θ0 − θ
σ/
√
n

)
,

where Φ is the cdf of a standard Normal and Z ∼ Φ. Now

sup
θ∈Θ0

β(θ) = β(θ0) = 1− Φ(c).

To get a size α test, set 1− Φ(c) = α so that

c = zα

where zα = Φ−1(1− α). Our test is: reject H0 when

Tn =
Xn − θ0

σ/
√
n

> zα.
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Example 4 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose

H0 : θ = θ0, H1 : θ 6= θ0.

This is called a two-sided alternative. We will reject H0 if |Tn| > c where Tn is defined as
before. Now

β(θ) = Pθ(Tn < −c) + Pθ(Tn > c)

= Pθ

(
Xn − θ0

σ/
√
n

< −c
)

+ Pθ

(
Xn − θ0

σ/
√
n

> c

)
= P

(
Z < −c+

θ0 − θ
σ/
√
n

)
+ P

(
Z > c+

θ0 − θ
σ/
√
n

)
= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ 1− Φ

(
c+

θ0 − θ
σ/
√
n

)
= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ Φ

(
−c− θ0 − θ

σ/
√
n

)
since Φ(−x) = 1− Φ(x). The size is

β(θ0) = 2Φ(−c).

To get a size α test we set 2Φ(−c) = α so that c = −Φ−1(α/2) = Φ−1(1− α/2) = zα/2. The
test is: reject H0 when

|T | =
∣∣∣∣Xn − θ0

σ/
√
n

∣∣∣∣ > zα/2.

When α = .05, zα/2 = 1.96 ≈ 2. In this case we reject when |T | > 2.

6 The Neyman-Pearson Test

Let Cα denote all level α tests. A test in Cα with power function β is uniformly most
powerful (UMP) if the following holds: if β′ is the power function of any other test in Cα
then β(θ) ≥ β′(θ) for all θ ∈ Θ1.

Consider testing H0 : θ = θ0 versus H1 : θ = θ1. (Simple null and simple alternative.)

Theorem 5 Let L(θ) = p(X1, . . . , Xn; θ) and

Tn =
L(θ1)

L(θ0)
.

Suppose we reject H0 if Tn > k where k is chosen so that

Pθ0(X
n ∈ R) = α.

This test is a UMP level α test.
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One nice thing about this is that it is a “general recipe” for doing a hypothesis test. The
drawback of course is that it only applies to the restricted class of simple versus simple
tests. The Neyman-Pearson test, despite its restricted applicability is a very important
conceptual contribution. When it is applicable it is an optimal test. This is often called the
Neyman-Pearson Lemma.

Proof of the Neyman-Pearson Lemma. Let us denote the test function of the NP test
as φNP and the test function of any other test we want to compare against as φA. The test
function simply takes the value 1 if the test rejects and 0 otherwise. To ease notation we
will assume that n = 1. Let f0(x) = L(θ0;x) and f1(x) = L(θ1;x). So with this notation,
we reject if:

f1(x)

f0(x)
≥ k.

To prove the NP Lemma, we will first argue that the following is true:∫
x

(φNP (x)− φA(x))︸ ︷︷ ︸
U1

(f1(x)− kf0(x))︸ ︷︷ ︸
U2

dx ≥ 0.

To see this we can just consider some cases:

1. If both tests reject or if both tests accept then the inequality is clearly true since the
LHS is 0.

2. If NP rejects, and the test A accepts then φNP (x) = 1, and φA(x) = 0, so U1 ≥ 0.
Since the NP test rejected the null we know that:

f1(x)

f0(x)
≥ k,

so that U2 ≥ 0. So the inequality is true in this case.

3. If NP accepts and the test A rejects then both U1 and U2 are negative so the inequality
is also true in this case.

So we can see that for every x, U1 × U2 ≥ 0 so it is true when we integrate over x. Now, we
can rearrange this inequality to see that:∫

x

(φNP (x)− φA(x))f1(x)dx ≥ k

∫
x

(φNP (x)− φA(x))f0(x)dx

= k

∫
x

φNP (x)f0(x)dx︸ ︷︷ ︸
=α

−
∫
x

φA(x)f0(x)dx︸ ︷︷ ︸
≤α


≥ 0.
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This proves the NP lemma, i.e. that the power of the NP test is larger than the power of
any other test. �

Now we develop some tests that are useful in other more complex settings.

7 The Wald Test

When we are testing a simple null hypothesis against a possibly composite alternative, the
NP test is no longer applicable. A general method is the Wald test. We are interested in
testing the hypotheses in a parametric model:

H0 : θ = θ0

H1 : θ 6= θ0.

The Wald test most generally is based on an asymptotically normal estimator, i.e. we suppose
that we have access to an estimator θ̂ which, under the null, satisfies the property that:

θ̂ − θ0

se0

d→ N(0, 1)

where se0 =
√

Var(θ̂) is the standard deviation of θ̂ under the null. In this case, we could
consider the statistic:

Tn =
θ̂ − θ0

se0

or, if se0 is not known, we use

Tn =
θ̂ − θ0

ŝe0

.

Under the null Tn
d→ N(0, 1), so we simply reject the null if: |Tn| ≥ zα/2. This controls

the Type-I error only asymptotically (i.e. only if n → ∞) but this is relatively standard in
applications. That is

Pθ0(|Tn| ≥ zα/2)→ α.

It is also valid to use the statistic

Tn =
θ̂ − θ0

ŝe

where ŝe is any consistent estimate of the standard error; it’s not necessary to assume H0

is true when estimating the standard error. (This follows from Slutsky’s theorem and the
continuous mapping theorem.)
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Example: Suppose that X1, . . . , Xn ∼ Ber(p), and the null is that p = p0. Defining
p̂ = 1

n

∑n
i=1Xi. Let

Tn =
p̂− p0√
p0(1−p0)

n

,

which has an asymptotic N(0, 1) distribution. As mentioned above, we can also use

Tn =
p̂− p0√
p̂(1−p̂)
n

.

Observe that this alternative test statistic also has an asymptotically standard normal dis-
tribution under the null. Its behaviour under the alternate is a bit more pleasant as we will
see.

7.1 Power of the Wald Test

To get some idea of what happens under the alternate, suppose we are in some situation
where the MLE has “standard asymptotics”, i.e.

√
n(θ̂ − θ)  N(0, 1/(I1(θ))). Suppose

that we use the statistic:

Tn =

√
nI1(θ̂)(θ̂ − θ0),

and that the true value of the parameter is θ1 6= θ0. Let us define:

∆ =
√
nI1(θ1)(θ0 − θ1),

then the probability that the Wald test rejects the null hypothesis is asymptotically:

1− Φ
(
∆ + zα/2

)
+ Φ

(
∆− zα/2

)
.

You will prove this on your HW (it is some simple re-arrangement, similar to what we have
done previously when computing the power function in a Gaussian model). There are some
aspects to notice:

1. If the difference between θ0 and θ1 is very small the power will tend to α, i.e. if ∆ ≈ 0
then the test will have trivial power.

2. As n→∞ the two Φ terms will approach either 0 or 1, and so the power will approach
1.

3. As a rule of thumb the Wald test will have non-trivial power if |θ0 − θ1| � 1√
nI1(θ1)

.
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8 Likelihood Ratio Test (LRT)

To test composite versus composite hypotheses the general method is to use something called
the (generalized) likelihood ratio test. We want to test:

H0 : θ ∈ Θ0

H1 : θ /∈ Θ0.

This test is simple: reject H0 if λ(X1, . . . , Xn) ≤ c where

λ(X1, . . . , Xn) =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
=
L(θ̂0)

L(θ̂)

where θ̂0 maximizes L(θ) subject to θ ∈ Θ0.

We can simplify the LRT by using an asymptotic approximation. This fact that the LRT
generally has a simple asymptotic approximation is known as Wilks’ phenomenon. First,
some notation:

Notation: Let W ∼ χ2
p. Define χ2

p,α by

P (W > χ2
p,α) = α.

We let `(θ) denote the log-likelihood in what follows.

Theorem 6 Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ ∈ R. Under H0,

−2 log λ(X1, . . . , Xn) χ2
1.

Hence, if we let Tn = −2 log λ(Xn) then

Pθ0(Tn > χ2
1,α)→ α

as n→∞.

Proof: Using a Taylor expansion:

`(θ) ≈ `(θ̂) + `′(θ̂)(θ − θ̂) + `′′(θ̂)
(θ − θ̂)2

2
= `(θ̂) + `′′(θ̂)

(θ − θ̂)2

2
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and so

−2 log λ(x1, . . . , xn) = 2`(θ̂)− 2`(θ0)

≈ 2`(θ̂)− 2`(θ̂)− `′′(θ̂)(θ0 − θ̂)2 = −`′′(θ̂)(θ0 − θ̂)2

=
− 1
n
`′′(θ̂)

I1(θ0)
(
√
nI1(θ0)(θ̂ − θ0))2 = An ×Bn.

Now An
p→ 1 by the WLLN and

√
Bn  N(0, 1). The result follows by Slutsky’s theorem.

Example 7 X1, . . . , Xn ∼ Poisson(λ). We want to test H0 : λ = λ0 versus H1 : λ 6= λ0.
Then

−2 log λ(xn) = 2n[(λ0 − λ̂)− λ̂ log(λ0/λ̂)].

We reject H0 when −2 log λ(xn) > χ2
1,α.

Now suppose that θ = (θ1, . . . , θk). Suppose that H0 : θ ∈ Θ0 fixes some of the parameters.
Then, under conditions,

Tn = −2 log λ(X1, . . . , Xn) χ2
ν

where

ν = dim(Θ)− dim(Θ0).

Therefore, an asymptotic level α test is: reject H0 when Tn > χ2
ν,α.

Example 8 Consider a multinomial with θ = (p1, . . . , p5). So

L(θ) = py11 · · · p
y5
5 .

Suppose we want to test

H0 : p1 = p2 = p3 and p4 = p5

versus the alternative that H0 is false. In this case

ν = 4− 1 = 3.

The LRT test statistic is

λ(x1, . . . , xn) =

∏5
j=1 p̂

Yj
0j∏5

j=1 p̂
Yj
j

where p̂j = Yj/n, p̂01 = p̂02 = p̂03 = (Y1 + Y2 + Y3)/n, p̂04 = p̂05 = (1 − 3p̂01)/2. Now we
reject H0 if −2λ(X1, . . . , Xn) > χ2

3,α. �
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9 p-values

When we test at a given level α we will reject or not reject. It is useful to summarize what
levels we would reject at and what levels we would not reject at.

The p-value is the smallest α at which we would reject H0.

In other words, we reject at all α ≥ p. So, if the pvalue is 0.03, then we would reject at
α = 0.05 but not at α = 0.01.

Hence, to test at level α, we reject when p < α.

Theorem 9 Suppose we have a test of the form: reject when T (X1, . . . , Xn) > c. Then the
p-value is

p = sup
θ∈Θ0

Pθ(Tn(X∗1 , . . . , X
∗
n) ≥ Tn(x1, . . . , xn))

where x1, . . . , xn are the observed data and X∗1 , . . . , X
∗
n ∼ pθ0.

Example 10 X1, . . . , Xn ∼ N(θ, 1). Test that H0 : θ = θ0 versus H1 : θ 6= θ0. We reject
when |Tn| is large, where Tn =

√
n(Xn − θ0). Let tn be the observed value of Tn. Let

Z ∼ N(0, 1). Then,

p = Pθ0
(
|
√
n(Xn − θ0)| > tn

)
= P (|Z| > tn) = 2Φ(−|tn|).

The p-value is a random variable. Under some assumptions that you will see in your HW
the p-value will be uniformly distributed on [0, 1] under the null.

Important. Note that p is NOT equal to P(H0|X1, . . . , Xn). The latter is a Bayesian
quantity which we will discuss later.
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