
Lecture 18
36-705

Recall that the FDR (false discovery rate) is

FDR = E[FDP ]

where the FDP (false discovery proportion) is

FDP =
number of false rejections

number of rejections
=
V

R

where the ratio is defined to be 0 if there are no rejections. We will next consider how one
can control the FDR. We will describe a procedure known as the Benjamini-Hochberg (BH)
procedure.

0.1 The BH procedure

The BH procedure is one that controls the FDR under independence (i.e. the p-values are
independent). There is a different version this procedure that works under dependence.

The procedure is:

1. Suppose we do d tests. Let us take the p-values p1, . . . , pd, and sort them, i.e. we
create the list: p(1) ≤ p(2) ≤ . . . ≤ p(d).

2. Define the thresholds:

ti =
iα

d
.

3. Find the largest imax such that

imax = arg max
i
{i : p(i) < ti}.

4. Reject all nulls up to and including imax.

This might seem a bit confusing but here is a simple picture:
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0.2 Properties of FDR

We have now seen a procedure that controls the FDR under some assumptions. One question
of interest is how does FDR control compare to FWER control? Another is just: how do we
interpret FDR control?

Interpreting FDR control:

The way to think about FDR control is: if we repeat our experiment many times, on average
we control the FDP. This is not a statement about the individual experiment we did conduct,
and really it does not say much about how likely it is that on a given experiment we have
an FDP that is larger than a threshold (think about using Markov’s inequality).

Connection to FWER:

1. The first connection is that under the global null (when all the null hypotheses are
true) FDR control is equivalent to FWER control.

Proof: Under the global null, any rejection is a false rejection. There are two
possibilities: either we do not reject anything: in this case the FDP = 0. If we do
reject any null hypothesis then our FDP is 1 (since V = R). So we have that:

FDR = E[FDP] = P(V > 0)× 1 + P(V = 0)× 0 = P(V > 0) = FWER.

2. The second connection is that the FWER ≥ FDR always. This implies that controlling
the FWER implies FDR control.
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Proof: We can see that the following is a simple upper bound on the FDP:

FDP ≤ I(V ≥ 1),

since if V = 0, FDP = 0, and if V > 0 then V/R ≤ 1. Taking expectations of this
expression gives:

FDR ≤ P(V ≥ 1) = FWER.

The flip-side of this is that FDR control is less stringent so if this is the correct measure
for you then you will have more power by controlling FDR (rather than controlling
FWER).

1 Proving that BH controls FDR

The main result is the following:

Theorem: Suppose that the p-values are independent, the BH procedure controls the FDR
at level α. In fact,

FDR ≤ d0α

d
≤ α.

Proof Intuition: Suppose that the BH procedure returned a value imax then we know
that,

p(imax) <
imaxα

d
.

We have rejected imax hypotheses. At the cut-off imaxα
d

we expect that d0imaxα
d

nulls to be
rejected. This gives us that the FDR should be roughly:

FDR ≈ d0imaxα

dimax

=
d0α

d
≤ α.

Formalizing this argument is a bit intricate: notice that imax is a random variable and fur-
thermore the numerator and denominator in the FDP are not independent random variables
so we need to be careful while taking the expectation of the ratio.

Here is a proof from Emmanuel Candes’ Stat 300c notes at Stanford. These notes are in
general a great resource that delve much deeper into theoretical aspects of multiple testing.

Proof: When d0 = 0 there are no false discoveries so there is nothing to prove. We will
suppose that d0 ≥ 1, and denote the set of nulls as I0. Let us define:

Vi = I(Hi is rejected),
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then we can write the FDP as:

FDP =
∑
i∈I0

Vi
max{R, 1}

,

notice that taking the max in the denominator just avoids the 0/0 problem, and is a short-
hand way of writing the FDP. Suppose we could prove that:

E
[

Vi
max{R, 1}

]
=
α

d
,

then we are done since,

FDR =
∑
i∈I0

E
[

Vi
max{R, 1}

]
=
d0α

d
.

To prove the claim we first re-write:

Vi
max{R, 1}

=
d∑

k=1

ViI(R = k)

k
,

noting that if R = 0 both the LHS and RHS are 0. We now need to make some further
observations:

1. Suppose that there are k rejections, then we can rewrite:

Vi = I(Hi is rejected) = I(pi ≤ kα/d).

2. Suppose that pi ≤ αk/n, then we take pi and set it to 0, and denote the number of
rejections as R(pi → 0) and note that R(pi → 0) is exactly the same as R. On the
other hand if pi > αk/n then Vi = 0. So we can write:

ViI(R = k) = ViI(R(pi → 0) = k).

Now, returning to the main thread suppose we considered the conditional expectation:

E
[
ViI(R = k)

k

∣∣∣p1, . . . , pi−1, pi+1, . . . , pd

]
=

E[I(pi ≤ kα/d)I(R(pi → 0) = k)|p1, . . . , pi−1, pi+1, . . . , pd]

k

=
I(R(pi → 0) = k)α

d
,

where we use the fact that conditional on the other p-values I(R(pi → 0) = k) is determin-
istic and that the p-values have uniform distribution under the null, and that the nulls are
independent so that:

E[I(pi ≤ kα/d)|p1, . . . , pi−1, pi+1, . . . , pd] = E[I(pi ≤ kα/d)] = kα/d.
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Now, by iterated expectations:

E
[

Vi
max{R, 1}

]
=

d∑
k=1

E
[
E
[
ViI(R = k)

k

∣∣∣p1, . . . , pi−1, pi+1, . . . , pd

]]

=
d∑

k=1

I(R(pi → 0) = k)α

d
=
α

d
,

which was the claim we needed to prove. �

Today we will discuss confidence sets and ways to construct them. We have discussed point
estimation so far where the goal is to construct an estimate θ̂(X1, . . . , Xn) of some parameter
θ after observing {X1, . . . , Xn}.

The setting here is that we have a statistical model (i.e. a collection of distributions) P . Let
Cn(X1, . . . , Xn) be a set constructed using the observed data X1, . . . , Xn. This is a random
set. Cn is a 1− α confidence set for a parameter θ if:

P (θ ∈ Cn(X1, . . . , Xn)) ≥ 1− α, for all P ∈ P .

This means that no matter which distribution in P generated the data, the interval guar-
antees the coverage property described above. Some people would refer to such intervals as
honest confidence intervals to make explicit the fact that the coverage is uniform over the
model.

At a high-level, the confidence interval gives us some idea of how precise our estimate of the
unknown parameter is, i.e. a wide interval indicates that our (point) estimate is imprecise.

Example: Suppose that we considered, X1, . . . , Xn ∼ U [0, θ]. Then we could construct the

usual point estimate θ̂ = X(n). We could perhaps consider two types of confidence intervals:

C1 = [a1θ̂, b1θ̂], 1 ≤ a1 ≤ b1

C2 = [θ̂ + a2, θ̂ + b2], a2, b2 ≥ 0.

Let us try to calculate the coverage probabilities of these two types of intervals. As a
preliminary observe that:

P(θ̂ ≤ t) =

(
t

θ

)n
, for 0 ≤ t ≤ θ.

1. C1: We can compute that,

P(θ ∈ C1) = P(θ̂ ≤ θ/a1, θ̂ ≥ θ/b1)

= P(θ̂ ≤ θ/a1)− P(θ̂ ≤ θ/b1)

=

(
1

a1

)n
−
(

1

b1

)n
.
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So we have that for instance choosing a1 = 1, b1 =
(
1
α

)1/n
guarantees us that this

confidence interval has coverage probability exactly 1− α.

2. C2: Similarly we have that,

P(θ ∈ C2) = P(θ̂ ≤ θ − a2, θ̂ ≥ θ − b2)
= P(θ̂ ≤ θ − a2)− P(θ̂ ≤ θ − b2)

=

(
θ − a2
θ

)n
−
(
θ − b2
θ

)n
.

Notice that now the coverage probability depends on the unknown parameter θ (which
is undesirable). Furthermore, if we choose any constants (a2, b2) (say depending only
on the desired coverage probability α), then as θ → ∞ we have that the interval has
coverage probability that tends to 0, i.e. the interval is not honest for any constants
(a2, b2).

We will now discuss a few different ways of constructing confidence intervals. Although
superficially different most of these methods are roughly the same.

2 Inverting a test

We discussed this method in the last lecture. We suppose that we have a (family of) test(s)
for the hypotheses:

H0 : θ = θ0

H1 : θ 6= θ0.

These tests have a rejection region and a corresponding acceptance region (where we fail to
reject the null). Denote the acceptance region for the test of θ = θ0 as A(θ0). This is a
subset of the sample space.

Given observed data {X1, . . . , Xn} we consider the random set:

C(X1, . . . , Xn) = {θ0 : {X1, . . . , Xn} ∈ A(θ0)}.

Our confidence set is simply the set of parameters θ0 that we would fail to reject using our
family of tests. If our family of tests has level α then the set C(X1, . . . , Xn) is a 1 − α
confidence set.

To see this observe that since our test controls the Type I error we have that for any parameter
θ0,

Pθ0({X1, . . . , Xn} /∈ A(θ0)) ≤ α,
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so with probability at least 1 − α we have that, {X1, . . . , Xn} ∈ A(θ0) and hence that
θ0 ∈ C(X1, . . . , Xn).

We can also construct tests using confidence intervals, i.e. consider the test that rejects the
null hypothesis θ = θ0 if θ0 /∈ C(X1, . . . , Xn), then if C(X1, . . . , Xn) is a 1 − α confidence
interval this test has level α, i.e.

Pθ0(reject null θ = θ0) = Pθ0(θ0 /∈ C(X1, . . . , Xn)) ≤ α.

Let us quickly re-visit the uniform example. Suppose we observe X1, . . . , Xn ∼ U [0, θ] and
would like to construct a confidence interval, then one method would be to invert the LRT,
i.e. we compute the likelihood-ratio for testing H0 : θ = θ0 as if θ ≥ maxiXi then:

LR =

1
θn0
1

(maxiXi)n

=
(maxiXi)

n

θn0
,

and we note that we reject the null for small values of this quantity, i.e. we reject the null if

(maxiXi)
n

θn0
≤ kα,

for an appropriate choice of kα. So if we consider the confidence interval obtained by inverting
this test, we see that it has the form:

C(X1, . . . , Xn) =

{
θ : max

i
Xi ≤ θ ≤ maxiXi

k
1/n
α

}
,

which is precisely the type of multiplicative interval that we studied in the last lecture (we
also calculated a value for kα that ensures that C(X1, . . . , Xn) has coverage 1 − α in that
lecture). This just highlights that in this case, we could have obtained the right kind of
interval in a less ad hoc manner (by inverting the LRT).

Example: Suppose we observe X1, . . . , Xn ∼ Exp(λ), and want to construct a confidence
interval for λ.

As our test, suppose we use the LRT, i.e. we define the likelihood ratio:

Λ =
λn0 exp(−λ0

∑
iXi)

( 1
X

)n exp(−n)
.

The acceptance region has the form:

A(λ0) =
{
{X1, . . . , Xn} :

(
λ0
∑

Xi

)n
exp(−λ0

∑
Xi) ≥ kα(λ0)

}
,
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where kα(λ0) needs to be chosen appropriately to control the Type I error. Observe that
since Xi ∼ Exp(λ0), λ0Xi ∼ Exp(1), so kα(λ0) does not depend on λ0. Once we determine
the cut-off we would obtain the confidence interval by collecting:

C(X1, . . . , Xn) = {λ :
(
λ
∑

Xi

)n
exp(−λ

∑
Xi) ≥ kα},

which is an expression that can be solved numerically. Determining kα and then finding the
confidence set can be quite tedious to do exactly (see the Casella and Berger book) and an
alternative would be to use large-sample (asymptotic approximations).

3 Inverting Probability Inequalities

In some simple cases, we can use tail bounds to derive confidence intervals. These typically
have the advantage of being exact, finite-sample intervals. However, they are rarely used in
practice for many reasons including: (1) we do not always have tail bounds for estimators of
interest (2) there are usually imprecisely known constants in tails bounds (3) related to (2)
they are often very conservative (i.e. the intervals are often too wide to be useful).

Here are a couple of examples:

Example 1 Let X1, . . . , Xn ∼ Bernoulli(p). By Hoeffding’s inequality:

P(|p̂− p| > ε) ≤ 2e−2nε
2

.

Let

εn =

√
1

2n
log

(
2

α

)
.

Then

P

(
|p̂− p| >

√
1

2n
log

(
2

α

))
≤ α.

Hence, P(p ∈ C) ≥ 1− α where C = (p̂− εn, p̂+ εn).

Example 2 Let X1, . . . , Xn ∼ F . Suppose we want a confidence band for F . We can use
VC theory. Remember that

P
(

sup
x
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε

2

.

Let

εn =

√
1

2n
log

(
2

α

)
.
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Then

P

(
sup
x
|Fn(x)− F (x)| >

√
1

2n
log

(
2

α

))
≤ α.

Hence,
PF (L(t) ≤ F (t) ≤ U(t) for all t) ≥ 1− α

for all F , where
L(t) = F̂n(t)− εn, U(t) = F̂n(t) + εn.

We can improve this by taking

L(t) = max
{
F̂n(t)− εn, 0

}
, U(t) = min

{
F̂n(t) + εn, 1

}
.

3.1 Pivots

Another useful way of attempting to construct confidence intervals is to base the intervals
on pivots. A pivot is a function of the data and the unknown parameter θ – Q(X1, . . . , Xn, θ)
– whose distribution does not depend on θ.

Let us consider two examples:

1. Suppose that X1, . . . , Xn ∼ N(θ, 1) then we can see that Q(X1, . . . , Xn) = Xn − θ ∼
N(0, 1/n) and so the distribution of Q does not depend on θ.

2. Suppose we consider X1, . . . , Xn ∼ U [0, θ] and we consider the function:

Q(X1, . . . , Xn, θ) =
maxiXi

θ
,

has distribution:

P (Q(X1, . . . , Xn, θ) ≤ t) =

{
tn 0 ≤ t ≤ 1

1 t ≥ 1.

Once again the distribution does not depend on θ.

Given a pivot we can construct confidence intervals in a simple way. Since the distribution
of Q does not depend on θ, we can find a, b which do not depend on θ such that:

Pθ(a ≤ Q(X1, . . . , Xn, θ) ≤ b) = 1− α, for all θ ∈ Θ.

Now, we construct our confidence interval as:

C(X1, . . . , Xn) = {θ : a ≤ Q(X1, . . . , Xn, θ) ≤ b} .
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By our construction:

Pθ(θ ∈ C(X1, . . . , Xn)) = Pθ(a ≤ Q(X1, . . . , Xn, θ) ≤ b) = 1− α.

Going back to our two examples we find that we will once again obtain the now standard
intervals for the two problems (the additive interval for the Gaussian mean, and the multi-
plicative scale interval for the uniform parameter).

4 Tests Versus Confidence Intervals

Confidence intervals are more informative than tests. Intuitively, p-values are more informa-
tive than an accept/reject decision because it summarizes all the significance levels for which
we would reject the null hypothesis. Similarly, a confidence interval is more informative that
a test because it summarizes all the parameters for which we would (fail to) reject the null
hypothesis. More practically, a confidence interval tells us something about the “effect size”
as well as something about the uncertainty in our estimate of the “effect size”.

Look at Figure 1. Suppose we are testing H0 : θ = 0 versus H1 : θ 6= 0. We see 5 different
confidence intervals. The first two cases (top two) correspond to not rejecting H0. The
other three correspond to rejecting H0. Reporting the confidence intervals is much more
informative than simply reporting “reject” or “don’t reject.”
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Figure 1: Five examples: 1. Not significant, precise. 2. Not significant, imprecise. 3. Barely
significant, imprecise. 4. Barely significant, precise. 5. Significant and precise.
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