
Lecture Notes 19
36-705

So far we have focused on parametric models. Now we will turn our attention to nonpara-
metric inference. In particular, we will discuss estimating quantities known as statistical
functionals.

1 Statistical Functional

A statistical functional is a map ψ that maps a distribution P to a real number (or vector).
Examples include:

the mean: ψ(P ) =
∫
xp(x)dx

the variance ψ(P ) =
∫
x2p(x)dx−

(∫
xp(x)dx

)2
the median ψ(P ) = F−1(1/2) where F is the cdf

Sometimes people refer to an unknown statistical functional as a parameter. This should
not be confused with the idea of a parameter in a parametric model.

At this point, let me remind you of some notation. If g is any function then we write∫
g(x)dP (x) =

{∫
g(x)p(x)dx if X is continuous∑
j g(xj)p(xj) if X is discrete.

We also write this as
∫
g(x)dF (x) where F is the cdf.

2 Plug-In Estimators

Let X1, . . . , Xn ∼ P . Recall that the empirical distribution Pn is the distribution that puts
mass 1/n at each data point. Thus

Pn(A) =
1

n

∑
i

I(Xi ∈ A).

The corresponding cdf — the empirical cdf — is

Fn(t) =
1

n

∑
i

I(Xi ≤ t).
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If g is any function then∫
g(x)dPn(x) =

∫
g(x)dFn(x) =

1

n

∑
i

g(Xi).

If ψ(P ) is a statistical functional, the plug-in estimator is

ψ̂n = ψ(Pn).

For example, if ψ(P ) =
∫
xdP (x) is the mean then the plug-in estimator is

ψ̂n = ψ(Pn) =

∫
xdPn(x) =

1

n

∑
i

Xi.

If

ψ(P ) =

∫
(x− µ)2dP (x) =

∫
x2dP (x)−

(∫
xdP (x)

)2

is the variance then plug-in estimator is

ψ̂n = ψ(Pn) =

∫
x2dPn(x)−

(∫
xdPn(x)

)2

=
1

n

∑
i

X2
i −

(
1

n

∑
i

Xi

)2

=
1

n

∑
i

(Xi −Xn)2.

Let’s consider a bivariate example. Suppose that (X1, Y1), . . . , (Xn, Yn) ∼ P . The covariance
is

ψ(P ) = E[XY ]− E[X] E[Y ] =

∫
xydP (x, y)−

∫
xdP (x)

∫
ydP (y)

and the plug-in estimator is

ψ̂n =
1

n

∑
i

XiYi −XnY n =
∑
i

(Xi −Xn)(Yi − Y n).

Is plug-in estimation a good idea? It depends. If the functional ψ satisfies some weak
regularity conditions and P is well-behaved (for example, has some moments) that ψ̂n can
be a good estimator. We won’t go into details on this here.

The next question is: how do we do inference for a statistical functional? We’ll dicuss two
approaches: influence functions and the bootstrap.
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3 Influence Functions

Let δx denote a point mass at x. The influence function for a statistical functional ψ is
defined by

ϕ(x) = lim
ε→0

ψ((1− ε)P + εδx)− ψ(P )

ε
.

For example, if ψ(P ) is the mean of P then

ψ((1− ε)P + εδx)− ψ(P )

ε
=

(1− ε)ψ(P ) + εx)− ψ(P )

ε
= x− ψ(P ).

Hence ϕ(x) = x− ψ(P ).

Let’s consider another example. Suppose that ψ(P ) is the variance σ2, that is, ψ(P ) =∫
x2dP (x)− (

∫
xdP (x))2. Let µ denote the mean. Then

ψ((1− ε)P + εδx)− ψ(P ) = (1− ε)
∫
x2dP (x) + εx2 − [(1− ε)µ+ εx]2 − (

∫
x2dP (X)− µ2)

and so

ϕ(x) = lim
ε→0

ψ((1− ε)P + εδx)− ψ(P )

ε
= x2 −

∫
x2dP (x)− 2µx.

Notice that the influence function ϕ is itself a statistical functional: it depends on P . For
example, if ψ is the mean then ϕ(x) = x− ψ = x− ψ(P ). So we can write

ϕ(x) = ϕ(x, P ).

The empirical influence function is an estimate of the influence function obtained by replacing
P by Pn, that is,

ϕ̂(x) = ϕ(x, Pn).

So, for example, when ϕ(x) = x − ψ = x − ψ(P ) for the mean, the empirical influence
function is

ϕ̂(x) = x− ψ(Pn) = x−Xn.

Now we can use the following result.

Theorem 1 If ψ satisfies some regularity conditions then

√
n(ψ(Pn)− ψ(x)) N(0, τ 2)

where

τ 2 =

∫
ϕ2(x)dP (x).
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A consistent estimate of τ 2 is

τ̂ 2 =
1

n

∑
i

ϕ̂(Xi).

Hence, an asymptotic 1− α confidence interval for ψ(P ) is

ψ̂n ±
zα/2τ̂√
n
.

In the case where ψ(P ) is the mean we see that

τ̂ 2 =
1

n

∑
i

ϕ̂2(Xi) =
1

n

∑
i

(Xi −Xn)2 = S2
n

and the confidence interval is

Xn ±
zα/2Sn√

n
.

Of course, we did not need all this machinery to arrive at this confidence interval, but in
more complicated cases these methods can be very useful. Let’s consider another example.

Let ψ(P ) be the rth quantile for 0 < r < 1. Assume that the cdf is strictly increasing so that

ψ(P ) = F−1(r).

The plug-in estimator ψ̂n is the rth sample quantile

ψ̂n = inf{x : Fn(x) ≥ r}.

The influence function is

ϕ(x) =

{
r−1
p(ψ)

x ≤ ψ
r

p(ψ)
x > ψ

where p is the density function. Hence,

τ 2 =

∫
ϕ2(x)dP (x) =

r(1− r)
p2(ψ)

.

To estimate τ 2 we would need to estimate the density p. We’ll discuss how to do that later
in the course. However, there are simpler ways to get confidence intervals for quantiles.

There are many subtle technicalities associated with influence functions. These are beyond
the scope of the course but if you are interested, search for semiparametric inference.
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