Lecture Notes 20 36-705

We have discussed plug-in estimators and influence functions. Today we consider a different nonparametric approach for getting confidence intervals for plug-in estimators: the bootstrap.

1 Monte Carlo

Before we get to the bootstrap, we should briefly discuss the Monte Carlo method.

Let g be a function and let P be a distribution. Suppose we want to know the mean of g, that is $\mathbb{E}[g(X)] = \int g(x)p(x)dx$. One way to do this is to do the integral $\int g(x)p(x)dx$. Another approach is simulation, also known as Monte Carlo. We draw a large sample $X_1, \ldots, X_B \sim P$. Then, by the law of large numbers

$$\frac{1}{B}\sum_{j=1}^{B}g(X_j) \xrightarrow{P} \mathbb{E}[g(X)].$$

Since we can simulate as many observations as we want, we can make the estimate very close to $\mathbb{E}[q(X)]$.

The same is true for the variance. We can get the variance of g(X) by integration:

$$\operatorname{Var}[g(X)] = \int g^2(x)p(x) - \left(\int g(x)p(x)\right)^2.$$

But we can also compute the sample variance from the simulated values and, again, by the law of large numbers

$$\frac{1}{n}\sum_{j}(g(X_j)-\overline{g})^2 \xrightarrow{P} \operatorname{Var}[g(X)]$$

where $\overline{g} = \frac{1}{B} \sum_{j} g(X_j)$.

Now suppose that $T = g(X_1, \ldots, X_n)$ is a function of n iid variables. The mean is

$$\int \cdots \int g(x_1, \ldots, x_n) p(x_1) \cdots p(x_n) dx_1 \ldots dx_n$$

which is an *n*-dimensional integral. We can still use Monte-Carlo if we draw samples of size n each time. When we draw $X_1, \ldots, X_n \sim p$, we can think of this as one draw from the joint

density $p(x_1, \ldots, x_n) = p(x_1) \cdots p(x_n)$. In other words we do the following:

draw
$$X_1, \ldots, X_n \sim P$$
 compute $T_1 = g(X_1, \ldots, X_n)$
draw $X_1, \ldots, X_n \sim P$ compute $T_2 = g(X_1, \ldots, X_n)$
i
draw $X_1, \ldots, X_n \sim P$ compute $T_B = g(X_1, \ldots, X_n)$.

Then T_1, T_2, \ldots are draws from the distribution of $T = g(X_1, \ldots, X_n)$. Again, by the law of large numbers, as $B \to \infty$,

$$\frac{1}{B}\sum_{j=1}^{B}T_{j} \xrightarrow{P} \mathbb{E}[T] = \mathbb{E}[g(X_{1}, \dots, X_{n})]$$

and

$$\frac{1}{n}\sum_{j}(T_j - \overline{T})^2 \xrightarrow{P} \operatorname{Var}[T] = \operatorname{Var}[g(X_1, \dots, X_n)]$$

where $\overline{T} = \frac{1}{B} \sum_{j} T_{j}$.

2 Bootstrap Variance Estimation

Let $X_1, \ldots, X_n \sim P$ and let $T = g(X_1, \ldots, X_n)$ be some statistic. Of course, the case we have in mind is that $T = g(X_1, \ldots, X_n)$ is an estimator of some parameter. Our goal is to estimate the standard error, that is the standard deviation of T. As a concrete example, think of $T = g(X_1, \ldots, X_n)$ as the median of the data.

If we knew P, we could use Monte Carlo to estimate $\tau^2 = \operatorname{Var}[T]$. The idea of the bootstrap is to estimate P with the empirical distribution P_n . In other words, τ^2 is a statistical functional so we can write it as $\tau^2(P)$. We will estimate $\tau^2(P)$ with $\tau^2(P_n)$. Computing $\tau^2(P_n)$ is not easy to do analytically but now we can use Monte Carlo. We just need to simulate many times from P_n . When we draw a sample from P_n we usually denote the draws by X_i^* . So

$$X_1^*,\ldots,X_n^*\sim P_n$$

denotes a sample from P_n . We call X_1^*, \ldots, X_n^* a bootstrap sample.

Specifically:

draw
$$X_1^*, \ldots, X_n^* \sim P_n$$
 compute $T_1 = g(X_1^*, \ldots, X_n^*)$
draw $X_1^*, \ldots, X_n^* \sim P_n$ compute $T_2 = g(X_1^*, \ldots, X_n^*)$
i
draw $X_1^*, \ldots, X_n^* \sim P_n$ compute $T_B = g(X_1^*, \ldots, X_n^*)$.

Again, by the law of large numbers, as $B \to \infty$,

$$\widehat{\tau}^2 = \frac{1}{n} \sum_j (T_j - \overline{T})^2 \xrightarrow{P} \tau^2(P_n)$$

where $\overline{T} = \frac{1}{B} \sum_{j} T_{j}$. Note that there are two things going on:

- 1. We estimate $\tau^2(P)$ with $\tau^2(P_n)$
- 2. We approximate $\tau^2(P_n)$ with the Monte Carlo approximation $\hat{\tau}^2$.

These are two distinct ideas. The first is plug-in estimation and the second is Monte Carlo.

How do we draw a sample from P_n ? Remember that P_n puts mass 1/n at eachy data point. The distribution looks like this:

value
$$X_1 \quad X_2 \quad \cdots \quad X_n$$

mass $1/n \quad 1/n \quad \cdots \quad X_n$

To draw X_1^* we just draw one datapoint at random. To draw X_2^* we again draw one datapoint at random. We repeat this *n* times to get one bootstrap sample. Note that this is equivalent to drawing *n* times from the data with replacement. Draw a point; put it back; drsw a point; put it back; etc. For this reason, people often describe drawing a bootstrap sample as resampling the data. But is best regarded as drawing *n* times from P_n .

Now we can use the bootstrap for statistical inference. Suppose that $\widehat{\psi}_n = g(X_1, \ldots, X_n)$ is an estimator. For example, it could be a plug-in estimator. Now we apply the bootstrap method. We sample *n* observations from P_n and re-compute the estimator. We repeat *B* times to get $\widehat{\tau}$ which is the estimated standard error of $\widehat{\psi}_n$.

3 Bootstrap Confidence Intervals

We can also use the bootstrap to get a confidence interval for ψ . In fact, I will describe three methods.

Method 1. If $\widehat{\psi}_n$ is asymptotically Normal then a $1 - \alpha$ confidence interval is

$$\widehat{\psi}_n \pm z_{\alpha/2}\widehat{\tau}$$

where $\hat{\tau}$ is the bootstrap estimate of the standard error.

Method 2: The Percentile Interval. Let $\hat{\psi}_1^*, \ldots, \hat{\psi}_B^*$ denote the bootstrap values of the estimator. The percentile confidence interval is

$$C_n = [\widehat{\psi}^*_{(\alpha/2)}, \widehat{\psi}^*_{(1-\alpha/2)}]$$

where $\widehat{\psi}^*_{(\alpha/2)}$ is the $\alpha/2$ quantile of $\widehat{\psi}^*_1, \ldots, \widehat{\psi}^*_B$ and $\widehat{\psi}^*_{(1-\alpha/2)}$ is the $1 - \alpha/2$ quantile of $\widehat{\psi}^*_1, \ldots, \widehat{\psi}^*_B$.

Method 3: The Basic Bootstrap (Reverse Perentile). Suppose for a moment that we knew the distribution $G_{n}(t) = P(\sqrt{n}(t) - t)$

$$G_n(t) = P(\sqrt{n}(\psi_n - \psi) \le t).$$

Let $g_{\alpha/2} = G_n^{-1}(\alpha/2)$ and $g_{1-\alpha/2} = G_n^{-1}(1-\alpha/2).$ Let
$$C_n = \left[\widehat{\psi}_n - \frac{g_{1-\alpha/2}}{\sqrt{n}}, \widehat{\psi}_n - \frac{g_{\alpha/2}}{\sqrt{n}}\right]$$

Now

$$\mathbb{P}(\psi \in C_n) = \mathbb{P}\left(g_{\alpha/2} \le \sqrt{n}(\widehat{\psi}_n - \psi) \le g_{1-\alpha/2}\right)$$
$$= 1 - \alpha/2 - \alpha/2 = 1 - \alpha.$$

| .

This interval looks strange because you are used to Normal-based intervals. In fact, if G_n is Normal, this interval can be re-written to look like the usual interval due to the symmetry of the Normal.

We do not know G_n so we can't use this interval. But we can estimate G_n with the bootstrap. We define

$$\widehat{G}_n(t) = \frac{1}{n} \sum_{j=1}^B I(\sqrt{n}(\widehat{\psi}_j^* - \widehat{\psi}) \le t).$$

We then estimate $g_{\alpha/2} = G_n^{-1}(\alpha/2)$ and $g_{1-\alpha/2} = G_n^{-1}(1-\alpha/2)$ with $\widehat{g}_{\alpha/2} = \widehat{G}_n^{-1}(\alpha/2)$ and $\widehat{g}_{1-\alpha/2} = \widehat{G}_n^{-1}(1-\alpha/2)$. The confidence interval is

$$C_n = \left[\widehat{\psi}_n - \frac{\widehat{g}_{1-\alpha/2}}{\sqrt{n}}, \widehat{\psi}_n - \frac{\widehat{g}_{\alpha/2}}{\sqrt{n}}\right].$$

Note that

$$\widehat{g}_{(\alpha/2)} = \sqrt{n}(\widehat{\psi}^*_{(\alpha/2)} - \widehat{\psi})$$

and

$$\widehat{g}_{1-(\alpha/2)} = \sqrt{n}(\widehat{\psi}_{1-(\alpha/2)}^* - \widehat{\psi})$$

so that

$$\widehat{\psi} - \frac{g_{1-(\alpha/2)}}{\sqrt{n}} = 2\widehat{\psi} - \widehat{\psi}_{1-(\alpha/2)}^*$$

and

$$\widehat{\psi} - \frac{g_{(\alpha/2)}}{\sqrt{n}} = 2\widehat{\psi} - \widehat{\psi}^*_{(\alpha/2)}.$$

Therefore, we can write

$$C_n = \left[2\widehat{\psi} - \widehat{\psi}^*_{1-(\alpha/2)}, 2\widehat{\psi} - \widehat{\psi}^*_{(\alpha/2)}\right].$$

Again, it looks weird but it follows from the calculations.

4 The Parametric Bootstrap

The bootstrap can also be used for parametric models. Instead of drawing $X_1^*, \ldots, X_n^* \sim P_n$ we instead draw $X_1^*, \ldots, X_n^* \sim p(x; \hat{\theta})$. The res is the same.

5 Variants

There are many many many papers that have been written about the bootstrap. There are many different versions: the block bootstrap for time-series, the residual bootstrap or the wild bootstrap for regression, the smooth bootstrap, the bias-corrected bootstrap, and many others.

6 Why Does the Bootstrap Work?

We want that the quantiles of the bootstrap distribution of our statistic should be close to the quantiles its actual distribution. Let

$$\widehat{F}_n(t) = \mathbb{P}_n(\sqrt{n}(\widehat{\theta}_n^* - \widehat{\theta}_n) \le t | X_1, \dots, X_n),$$

be the CDF of the bootstrap distribution, and

$$F_n(t) = \mathbb{P}(\sqrt{n}(\widehat{\theta}_n - \theta) \le t),$$

be the CDF of the true sampling distribution of our statistic. We want to show that

$$\sup_{t} |\widehat{F}_n(t) - F_n(t)| \to 0.$$

This turns out to be true in quite a bit of generality, only requiring mild conditions (Hadamard differentiability) but we will prove it in the simplest case: when $\hat{\theta}_n$ is a sample mean. In this case there are much simpler ways to construct confidence intervals (using Normal approximations) but that is not really the point.

Suppose that $X_1, \ldots, X_n \sim P$ where X_i has mean μ and variance σ^2 . Suppose we want to construct a confidence interval for μ .

Let $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and define

$$F_n(t) = \mathbb{P}(\sqrt{n}(\widehat{\mu}_n - \mu) \le t). \tag{1}$$

We want to show that

$$\widehat{F}_n(t) = \mathbb{P}\Big(\sqrt{n}(\widehat{\mu}_n^* - \widehat{\mu}_n) \le t \mid X_1, \dots, X_n\Big)$$

is close to F_n .

Theorem 1 (Bootstrap Theorem) Suppose that $\mu_3 = \mathbb{E}|X_i|^3 < \infty$. Then,

$$\sup_{t} |\widehat{F}_{n}(t) - F_{n}(t)| = O_{P}\left(\frac{1}{\sqrt{n}}\right).$$

To prove this result, let us recall that Berry-Esseen Theorem.

Theorem 2 (Berry-Esseen Theorem) Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . Let $\mu_3 = \mathbb{E}[|X_i - \mu|^3] < \infty$. Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ be the sample mean and let Φ be the cdf of a N(0, 1) random variable. Let $Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$. Then

$$\sup_{z} \left| \mathbb{P}(Z_n \le z) - \Phi(z) \right| \le \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.$$
(2)

Proof of the Bootstrap Theorem. Let $\Phi_{\sigma}(t)$ denote the cdf of a Normal with mean 0 and variance σ^2 . Let $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2$. Thus, $\hat{\sigma}^2 = \operatorname{Var}(\sqrt{n}(\hat{\mu}_n^* - \hat{\mu}_n)|X_1, \dots, X_n)$. Now, by the triangle inequality,

$$\sup_{t} |\widehat{F}_{n}(t) - F_{n}(t)| \leq \sup_{t} |F_{n}(t) - \Phi_{\sigma}(t)| + \sup_{t} |\Phi_{\sigma}(t) - \Phi_{\widehat{\sigma}}(t)| + \sup_{t} |\widehat{F}_{n}(t) - \Phi_{\widehat{\sigma}}(t)|$$

= I + II + III.

Let $Z \sim N(0, 1)$. Then, $\sigma Z \sim N(0, \sigma^2)$ and from the Berry-Esseen theorem,

$$I = \sup_{t} |F_n(t) - \Phi_{\sigma}(t)| = \sup_{t} \left| \mathbb{P}\left(\sqrt{n}(\widehat{\mu}_n - \mu) \le t\right) - \mathbb{P}\left(\sigma Z \le t\right) \right|$$
$$= \sup_{t} \left| \mathbb{P}\left(\frac{\sqrt{n}(\widehat{\mu}_n - \mu)}{\sigma} \le \frac{t}{\sigma}\right) - \mathbb{P}\left(Z \le \frac{t}{\sigma}\right) \right| \le \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.$$

Using the same argument on the third term, we have that

$$III = \sup_{t} |\widehat{F}_{n}(t) - \Phi_{\widehat{\sigma}}(t)| \le \frac{33}{4} \frac{\widehat{\mu}_{3}}{\widehat{\sigma}^{3} \sqrt{n}}$$

where $\hat{\mu}_3 = \frac{1}{n} \sum_{i=1} |X_i - \hat{\mu}_n|^3$ is the empirical third moment. By the strong law of large numbers, $\hat{\mu}_3$ converges almost surely to μ_3 and $\hat{\sigma}$ converges almost surely to σ . So, almost surely, for all large n, $\hat{\mu}_3 \leq 2\mu_3$ and $\hat{\sigma} \geq (1/2)\sigma$ and III $\leq \frac{33}{4}\frac{4\mu_3}{\sqrt{n}}$. From the fact that $\hat{\sigma} - \sigma = O_P(\sqrt{1/n})$ it may be shown that II = $\sup_t |\Phi_{\sigma}(t) - \Phi_{\widehat{\sigma}}(t)| = O_P(\sqrt{1/n})$. (This may be seen by Taylor expanding $\Phi_{\widehat{\sigma}}(t)$ around σ .) This completes the proof. \Box

So far we have focused on the mean. Similar theorems may be proved for more general parameters. The details are complex so we will not discuss them here.

Figure 1: The distribution $F_n(t) = \mathbb{P}(\sqrt{n}(\hat{\theta}_n - \theta) \leq t)$ is close to some limit distribution L. Similarly, the bootstrap distribution $\hat{F}_n(t) = \mathbb{P}(\sqrt{n}(\hat{\theta}_n^* - \hat{\theta}_n) \leq t | X_1, \dots, X_n)$ is close to some limit distribution \hat{L} . Since \hat{L} and L are close, it follows that F_n and \hat{F}_n are close. In practice, we approximate \hat{F}_n with its Monte Carlo version \overline{F} which we can make as close to \hat{F}_n as we like by taking B large.

7 Failure of the Bootstrap

As usual when we need a counterexample we try the uniform distribution. Suppose that $X_1, \ldots, X_n \sim U[0, \theta]$ and we try to bootstrap the MLE to construct a confidence interval for θ . The mle is $X_{(n)}$. This point is contained in the bootstrap sample with probability

$$1 - (1 - 1/n)^n \approx .63.$$

So the bootstrap distribution puts mass .63 at the single point $X_{(n)}$. But we know that $n(X_{(n)} - \theta)$ has an exponential distribution. So the bootstrap distribution does not resemble the true distribution.