
Lecture Notes 20
36-705

We have discussed plug-in estimators and influence functions. Today we consider a dif-
ferent nonparametric approach for getting confidence intervals for plug-in estimators: the
bootstrap.

1 Monte Carlo

Before we get to the bootstrap, we should briefly discuss the Monte Carlo method.

Let g be a function and let P be a distribution. Suppose we want to know the mean of g, that
is E[g(X)] =

∫
g(x)p(x)dx. One way to do this is to do the integral

∫
g(x)p(x)dx. Another

approach is simulation, also known as Monte Carlo. We draw a large sampleX1, . . . , XB ∼ P .
Then, by the law of large numbers

1

B

B∑
j=1

g(Xj)
P→ E[g(X)].

Since we can simulate as many observations as we want, we can make the estimate very close
to E[g(X)].

The same is true for the variance. We can get the variance of g(X) by integration:

Var[g(X)] =

∫
g2(x)p(x)−

(∫
g(x)p(x)

)2

.

But we can also compute the sample variance from the simulated values and, again, by the
law of large numbers

1

n

∑
j

(g(Xj)− g)2
P→ Var[g(X)]

where g = 1
B

∑
j g(Xj).

Now suppose that T = g(X1, . . . , Xn) is a function of n iid variables. The mean is∫
· · ·
∫
g(x1, . . . , xn)p(x1) · · · p(xn)dx1 . . . dxn

which is an n-dimensional integral. We can still use Monte-Carlo if we draw samples of size
n each time. When we draw X1, . . . , Xn ∼ p, we can think of this as one draw from the joint
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density p(x1, . . . , xn) = p(x1) · · · p(xn). In other words we do the following:

draw X1, . . . , Xn ∼ P compute T1 = g(X1, . . . , Xn)

draw X1, . . . , Xn ∼ P compute T2 = g(X1, . . . , Xn)

...

draw X1, . . . , Xn ∼ P compute TB = g(X1, . . . , Xn).

Then T1, T2, . . . are draws from the distribution of T = g(X1, . . . , Xn). Again, by the law of
large numbers, as B →∞,

1

B

B∑
j=1

Tj
P→ E[T ] = E[g(X1, . . . , Xn)]

and
1

n

∑
j

(Tj − T )2
P→ Var[T ] = Var[g(X1, . . . , Xn)]

where T = 1
B

∑
j Tj.

2 Bootstrap Variance Estimation

Let X1, . . . , Xn ∼ P and let T = g(X1, . . . , Xn) be some statistic. Of course, the case we
have in mind is that T = g(X1, . . . , Xn) is an estimator of some parameter. Our goal is to
estimate the standard error, that is the standard deviation of T . As a concrete example,
think of T = g(X1, . . . , Xn) as the median of the data.

If we knew P , we could use Monte Carlo to estimate τ 2 = Var[T ]. The idea of the bootstrap is
to estimate P with the empirical distribution Pn. In other words, τ 2 is a statistical functional
so we can write it as τ 2(P ). We will estimate τ 2(P ) with τ 2(Pn). Computing τ 2(Pn) is not
easy to do analytically but now we can use Monte Carlo. We just need to simulate many
times from Pn. When we draw a sample from Pn we usually denote the draws by X∗i . So

X∗1 , . . . , X
∗
n ∼ Pn

denotes a sample from Pn. We call X∗1 , . . . , X
∗
n a bootstrap sample.

Specifically:

draw X∗1 , . . . , X
∗
n ∼ Pn compute T1 = g(X∗1 , . . . , X

∗
n)

draw X∗1 , . . . , X
∗
n ∼ Pn compute T2 = g(X∗1 , . . . , X

∗
n)

...

draw X∗1 , . . . , X
∗
n ∼ Pn compute TB = g(X∗1 , . . . , X

∗
n).
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Again, by the law of large numbers, as B →∞,

τ̂ 2 =
1

n

∑
j

(Tj − T )2
P→ τ 2(Pn)

where T = 1
B

∑
j Tj. Note that there are two things going on:

1. We estimate τ 2(P ) with τ 2(Pn)
2. We approximate τ 2(Pn) with the Monte Carlo approximation τ̂ 2.

These are two distinct ideas. The first is plug-in estimation an the second is Monte Carlo.

How do we draw a sample from Pn? Remember that Pn puts mass 1/n at eachy data point.
The distribution looks like this:

value X1 X2 · · · Xn

mass 1/n 1/n · · · Xn

To draw X∗1 we just draw one datapoint at random. To draw X∗2 we again draw one datapoint
at random. We repeat this n times to get one bootstrap sample. Note that this is equivalent
to drawing n times from the data with replacement. Draw a point; put it back; drsw a
point; put it back; etc. For this reason, people often describe drawing a bootstrap sample
as resampling the data. But is is best regarded as drawing n times from Pn.

Now we can use the bootstrap for statistical inference. Suppose that ψ̂n = g(X1, . . . , Xn) is
an estimator. For example, it could be a plug-in estimator. Now we apply the bootstrap
method. We sample n observations from Pn and re-compute the estimator. We repeat B
times to get τ̂ which is the estimated standard error of ψ̂n.

3 Bootstrap Confidence Intervals

We can also use the bootstrap to get a confidence interval for ψ. In fact, I will describe three
methods.

Method 1. If ψ̂n is asymptotically Normal then a 1− α confidence interval is

ψ̂n ± zα/2τ̂

where τ̂ is the bootstrap estimate of the standard error.

Method 2: The Percentile Interval. Let ψ̂∗1, . . . , ψ̂
∗
B denote the bootstrap values of the

estimator. The percentile confidence interval is

Cn = [ψ̂∗(α/2), ψ̂
∗
(1−α/2)]
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where ψ̂∗(α/2) is the α/2 quantile of ψ̂∗1, . . . , ψ̂
∗
B and ψ̂∗(1−α/2) is the 1 − α/2 quantile of

ψ̂∗1, . . . , ψ̂
∗
B.

Method 3: The Basic Bootstrap (Reverse Perentile). Suppose for a moment that we
knew the distribution

Gn(t) = P (
√
n(ψ̂n − ψ) ≤ t).

Let gα/2 = G−1n (α/2) and g1−α/2 = G−1n (1− α/2). Let

Cn =

[
ψ̂n −

g1−α/2√
n
, ψ̂n −

gα/2√
n

]
.

Now

P(ψ ∈ Cn) = P
(
gα/2 ≤

√
n(ψ̂n − ψ) ≤ g1−α/2

)
= 1− α/2− α/2 = 1− α.

This interval looks strange because you are used to Normal-based intervals. In fact, if Gn is
Normal, this interval can be re-written to look like the usual interval due to the symmetry
of the Normal.

We do not know Gn so we can’t use this interval. But we can estimate Gn with the bootstrap.
We define

Ĝn(t) =
1

n

B∑
j=1

I(
√
n(ψ̂∗j − ψ̂) ≤ t).

We then estimate gα/2 = G−1n (α/2) and g1−α/2 = G−1n (1 − α/2) with ĝα/2 = Ĝ−1n (α/2) and

ĝ1−α/2 = Ĝ−1n (1− α/2). The confidence interval is

Cn =

[
ψ̂n −

ĝ1−α/2√
n
, ψ̂n −

ĝα/2√
n

]
.

Note that
ĝ(α/2) =

√
n(ψ̂∗(α/2) − ψ̂)

and
ĝ1−(α/2) =

√
n(ψ̂∗1−(α/2) − ψ̂)

so that

ψ̂ −
ĝ1−(α/2)√

n
= 2ψ̂ − ψ̂∗1−(α/2)

and

ψ̂ −
ĝ(α/2)√
n

= 2ψ̂ − ψ̂∗(α/2).

Therefore, we can write

Cn =
[
2ψ̂ − ψ̂∗1−(α/2), 2ψ̂ − ψ̂∗(α/2)

]
.

Again, it looks weird but it follows from the calculations.
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4 The Parametric Bootstrap

The bootstrap can also be used for parametric models. Instead of drawing X∗1 , . . . , X
∗
n ∼ Pn

we instead draw X∗1 , . . . , X
∗
n ∼ p(x; θ̂). The res is the same.

5 Variants

There are many many many papers that have been written about the bootstrap. There are
many different versions: the block bootstrap for time-series, the residual bootstrap or the
wild bootstrap for regression, the smooth bootstrap, the bias-corrected bootstrap, and many
others.

6 Why Does the Bootstrap Work?

We want that the quantiles of the bootstrap distribution of our statistic should be close to
the quantiles its actual distribution. Let

F̂n(t) = Pn(
√
n(θ̂∗n − θ̂n) ≤ t|X1, . . . , Xn),

be the CDF of the bootstrap distribution, and

Fn(t) = P(
√
n(θ̂n − θ) ≤ t),

be the CDF of the true sampling distribution of our statistic. We want to show that

sup
t
|F̂n(t)− Fn(t)| → 0.

This turns out to be true in quite a bit of generality, only requiring mild conditions (Hadamard

differentiability) but we will prove it in the simplest case: when θ̂n is a sample mean. In this
case there are much simpler ways to construct confidence intervals (using Normal approxi-
mations) but that is not really the point.

Suppose that X1, . . . , Xn ∼ P where Xi has mean µ and variance σ2. Suppose we want to
construct a confidence interval for µ.

Let µ̂n = 1
n

∑n
i=1Xi and define

Fn(t) = P(
√
n(µ̂n − µ) ≤ t). (1)

We want to show that

F̂n(t) = P
(√

n(µ̂∗n − µ̂n) ≤ t
∣∣∣ X1, . . . , Xn

)
is close to Fn.
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Theorem 1 (Bootstrap Theorem) Suppose that µ3 = E|Xi|3 <∞. Then,

sup
t
|F̂n(t)− Fn(t)| = OP

(
1√
n

)
.

To prove this result, let us recall that Berry-Esseen Theorem.

Theorem 2 (Berry-Esseen Theorem) Let X1, . . . , Xn be i.i.d. with mean µ and variance
σ2. Let µ3 = E[|Xi − µ|3] <∞. Let Xn = n−1

∑n
i=1Xi be the sample mean and let Φ be the

cdf of a N(0, 1) random variable. Let Zn =
√
n(Xn−µ)

σ
. Then

sup
z

∣∣∣P(Zn ≤ z)− Φ(z)
∣∣∣ ≤ 33

4

µ3

σ3
√
n
. (2)

Proof of the Bootstrap Theorem. Let Φσ(t) denote the cdf of a Normal with mean 0
and variance σ2. Let σ̂2 = 1

n

∑n
i=1(Xi − µ̂n)2. Thus, σ̂2 = Var(

√
n(µ̂∗n − µ̂n)|X1, . . . , Xn).

Now, by the triangle inequality,

sup
t
|F̂n(t)− Fn(t)| ≤ sup

t
|Fn(t)− Φσ(t)|+ sup

t
|Φσ(t)− Φσ̂(t)|+ sup

t
|F̂n(t)− Φσ̂(t)|

= I + II + III.

Let Z ∼ N(0, 1). Then, σZ ∼ N(0, σ2) and from the Berry-Esseen theorem,

I = sup
t
|Fn(t)− Φσ(t)| = sup

t

∣∣P (√n(µ̂n − µ) ≤ t
)
− P (σZ ≤ t)

∣∣
= sup

t

∣∣∣∣P(√n(µ̂n − µ)

σ
≤ t

σ

)
− P

(
Z ≤ t

σ

)∣∣∣∣ ≤ 33

4

µ3

σ3
√
n
.

Using the same argument on the third term, we have that

III = sup
t
|F̂n(t)− Φσ̂(t)| ≤ 33

4

µ̂3

σ̂3
√
n

where µ̂3 = 1
n

∑
i=1 |Xi − µ̂n|3 is the empirical third moment. By the strong law of large

numbers, µ̂3 converges almost surely to µ3 and σ̂ converges almost surely to σ. So, almost
surely, for all large n, µ̂3 ≤ 2µ3 and σ̂ ≥ (1/2)σ and III ≤ 33

4
4µ3√
n
. From the fact that

σ̂−σ = OP (
√

1/n) it may be shown that II = supt |Φσ(t)−Φσ̂(t)| = OP (
√

1/n). (This may
be seen by Taylor expanding Φσ̂(t) around σ.) This completes the proof. �

So far we have focused on the mean. Similar theorems may be proved for more general
parameters. The details are complex so we will not discuss them here.
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Fn

F̂n

L

L̂

F

O(1/
√
n)

OP (1/
√
n)

OP (1/
√
n)

O(1/
√
B)

1

Figure 1: The distribution Fn(t) = P(
√
n(θ̂n − θ) ≤ t) is close to some limit distribution

L. Similarly, the bootstrap distribution F̂n(t) = P(
√
n(θ̂∗n − θ̂n) ≤ t|X1, . . . , Xn) is close to

some limit distribution L̂. Since L̂ and L are close, it follows that Fn and F̂n are close. In
practice, we approximate F̂n with its Monte Carlo version F which we can make as close to
F̂n as we like by taking B large.
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7 Failure of the Bootstrap

As usual when we need a counterexample we try the uniform distribution. Suppose that
X1, . . . , Xn ∼ U [0, θ] and we try to bootstrap the MLE to construct a confidence interval
for θ. The mle is X(n). This point is contained in the bootstrap sample with probability

1− (1− 1/n)n ≈ .63.

So the bootstrap distribution puts mass .63 at the single point X(n). But we know that
n(X(n)−θ) has an exponential distribution. So the bootstrap distribution does not resemble
the true distribution.
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