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Today we will discuss Bayesian Inference.

1 Bayesian Inference

We have already talked about the mechanics of Bayesian inference when we discussed con-
structing point estimates by treating the parameters as random with a prior, and the com-
puting and summarizing the posterior. What we really did not talk about yet, and will
spend a small amount of time talking about now is the philosophy of Bayesian inference.

The philosophical distinction between Bayes and frequentists is deep. We have so far followed
the frequentist framework, where, to us a probability is representing some type of long run
frequency, i.e. when we say the probability that our estimator is close to some unknown
“true” parameter with probability at least 1 − δ we are really imagining repeating this (or
some other) experiment many many times and then our guarantees will be correct for at
least 1 − δ of these experiments. Similarly, with confidence intervals, we imagine many
people across the world construct confidence intervals and our guarantee is that 95% of
those intervals would trap the true parameter, i.e. the goal of frequentist inference is
to create procedures with long run guarantees.

Moreover, the guarantees should be uniform over θ if possible. For example, a confidence
interval traps the true value of θ with probability 1− α, no matter what the true value of θ
is. In frequentist inference, procedures are random while parameters are fixed,
unknown quantities.

In the Bayesian approach, probability is regarded as a measure of subjective degree of
belief. One can view the Bayesian approach as a way to manipulate beliefs. Beliefs are
then assumed to follow the rules of normal probabilities by a notion called coherence. In this
framework, everything, including parameters, is regarded as random. These procedures do
not have to satisfy frequency guarantees.

A summary of the main ideas is in Table 1.

2 The mechanics of Bayesian Inference

Roughly, the setup in Bayesian Inference is exactly the same as in frequentist inference: we
begin by specifying a statistical model, i.e. a collection of distributions {Pθ : θ ∈ Θ}.

The main distinction is that we now treat the parameter θ as random, and encode our “prior
beliefs” about the value of the parameter in a distribution π.
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Bayesian Frequentist
Probability subjective degree of belief limiting frequency
Goal analyze beliefs create procedures with frequency guarantees
θ random variable fixed
X random variable random variable
Use Bayes’ theorem? Yes. To update beliefs. Yes, if it leads to procedure with

good frequentist behavior.
Otherwise no.

Table 1: Bayesian versus Frequentist Inference

We assume that the observed data, is from the conditional distribution, conditional on some
realization of the random parameter, i.e. the setup is:

θ ∼ π

{X1, . . . , Xn}|θ ∼ Pθ.

We do not observe θ but can compute our “posterior belief” using Bayes’ rule, i.e.:

π(θ|X1, . . . , Xn) =
L(θ;X1, . . . , Xn)π(θ)∫
θ
L(θ;X1, . . . , Xn)π(θ)

∝ L(θ)π(θ)

i.e. while the frequentist treats the likelihood as just a function of θ, the Bayesian (weights
and) normalizes the likelihood and interprets it as a distribution over Θ.

We have seen examples of this whole thing before, except rather than treat the posterior as
an object of interest, we used it to obtain point estimates and we focused on the frequentist
properties of the resulting point estimate.

3 The goals of Bayesian inference

In frequentist inference the goal was: create procedures that have good frequency properties.

In Bayesian inference the goal is to write down a prior that captures your prior belief and
compute the posterior; then you are essentially done.

4 Bayesian confidence sets and Frequentist guarantees

Once we have a posterior distribution, we can construct what are called credible sets: they
are the Bayesian analogue of confidence sets but are quite different.
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A 1−α credible set/interval is simply any set Cα to which the posterior assigns 1−α mass,
i.e. ∫

Cα

π(θ|X1, . . . , Xn)dθ = 1− α.

Once again notice that the thing that is random is θ, the data is conditioned on (i.e. fixed).
The set Cα is fixed (i.e. not random) here, unlike in a frequentist confidence interval. These
intervals do not typically have frequency guarantees, and we will see examples of this.

If one is interested in the frequency properties of Bayesian inference then one might also be
interested in some notion of frequentist consistency and rates of convergence. The typical way
to formulate frequentist consistency is via something called posterior contraction, i.e. in the
frequentist setup (where θ∗ is fixed, unknown) we want that our posterior concentrates around
the true value of the parameter (consistency) and does so quickly (rates of convergence).

Formally, let Bε = {θ : ||θ − θ∗|| ≤ ε} be a ball around the true value θ∗ and let

Q =

∫
Bε

p(θ|X1, . . . , Xn)dθ

be the posterior probability of Bε. Now we think of Q ≡ Q(X1, . . . , Xn) as a statistic in the

frequentist sense: the randomness is in X1, . . . , Xn. The posterior is consistent if Q
P→ 1 for

every ε > 0 and every θ∗. The convergence is with respect to p(x1, . . . , xn|θ∗). We say that
the rate of convergence is εn if the above is true when we let ε = εn for some εn → 0.

In finite dimensional parametric models, if the prior puts positive mass around each pa-
rameter value, the posterior will typically be consistent and the rate of convergence will be
O(n−1/2).

5 Bernstein-von Mises theorem

The Bernstein-von Mises theorem guarantees us that in fixed-dimensional problems, under
the assumption that the prior is continuous, and (strictly) positive in a neighborhood around
θ∗, the posterior is close to a Gaussian, i.e.∥∥∥∥∥π(θ|X1, . . . , Xn)−N

(
θ̂n,

I(θ̂n)−1

n

)∥∥∥∥∥
TV

→ 0,

where θ̂n is the MLE and the distance between the two distributions is the total-variation
distance, i.e. for two distributions with densities p, q:

‖p− q‖TV =
1

2

∫
|p(x)− q(x)|dx.
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We might discuss this further at some point but for now you should take away that the
posterior is very close to a Gaussian centered at the MLE with rapidly shrinking variance.

One immediate consequence is that credible intervals will be roughly identical to the usual
Wald interval (based on the MLE) as n→∞. The key take away: in fixed dimension, large
sample-size problems, under some conditions Bayesian procedures will behave like standard
frequentist inference.

The condition “(strictly) positive in a neighborhood around θ∗” is extremely strong in high-
dimensions or in a non-parametric problem. In general, when the parameter space is large
you should be suspicious of this assumption.

6 Where do priors come from?

The purist Bayesian view is that the prior should truly be an encoding of your prior beliefs.
Often we choose priors by convenience (recall our examples from the minimax lecture). Some
might argue that in many cases the priors do not matter but this is only rigorously true in
low-dimensional, parametric problems.

Some might also choose priors based on the data; this is known as empirical Bayes. This
is often a good idea but some would consider it to not strictly adhere to the Bayesian
philosophy.

Some have argued for what are called non-informative priors, i.e. priors that somehow
capture complete ignorance about the parameter. The natural first attempt would be to
say that we take π(θ) ∝ 1, however this has some drawbacks. If we have no information
about the parameter θ then presumably we should also have no information about some
transformation about the parameter, i.e. say θ2. However, if you transform the flat prior
to a prior on θ2 it will not be flat. A prior that is in fact invariant under transformations
is called Jeffreys prior where we choose π(θ) ∝

√
I(θ), where I(θ) is the Fisher information

for the model under consideration. You will verify this in your HW.

7 Priors = Regularizers?

A slightly different viewpoint that is often articulated is that one can view priors as regu-
larizers.

Most regularized frequentist estimators, for instance estimating Bernoulli probabilities with
“Laplace smoothing” (i.e. adding psuedo-counts) is just the posterior mean with a Beta
prior. The LASSO regression estimator or Ridge regression estimator are just the posterior
mode with either a Laplace prior or a Gaussian prior (respectively). Relatedly, one can
derive model complexity regularizers with appropriate model complexity dependent priors.
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The argument is that “many sensible frequentists procedures (ones with strong guarantees)
are just posterior summaries with particular priors.”

This argument should be taken with a grain of salt: lets focus on the LASSO, which is the
posterior mode with a Laplace prior. As we have discussed previously the LASSO has some
very desirable properties (high-dimensional prediction consistency) and so one might wonder
does the (full) posterior have nice properties in a high-dimensional setting?

The answer turns out to be no: once you leave the realm of the Bernstein-von Mises theorem
(fixed d, growing n) things can break down. In particular, in the high-dimensional regres-
sion problem the posterior itself does not meaningfully concentrate and sampling from the
posterior will lead to completely meaningless inference (from a frequentist point of view).
Essentially only the posterior mode has nice properties, the rest of the posterior is useless.

8 Failure of credible intervals

We have said many times now that things can break down in high-dimensions. This is
particularly alarming if we treat credible intervals as confidence intervals. They are not
valid confidence intervals. Let us verify this in a simple example.

Suppose we are in the Gaussian sequence model, i.e. we observe,

Yi = θi + εi, i ∈ {1, . . . , d},

and εi ∼ N(0, σ2/n).

We choose a flat prior (although this is not really crucial it makes the calculations simpler),
i.e. π(θ1, . . . , θd) ∝ 1. This is an example of something called an improper prior, i.e. it is not
really a valid distribution. We can still use the usual mechanics to obtain a valid posterior.

Our goal is to construct a confidence interval for the parameter µ =
∑d

i=1 θ
2
i . Since the prior

is flat the posterior is easy to compute and in particular, the posterior factorizes over the
parameters (since the prior is flat and the likelihood factorizes) and we have:

π(θi|Y1, . . . , Yd)
d
= N(Yi, σ

2/n).

The posterior for µ|Y1, . . . , Yd is σ2/n times a non-central χ2 distribution, with d degrees of
freedom and non-centrality parameter λ = (n/σ2)

∑d
i=1 Y

2
i . The mean of the posterior for µ

is
∑d

i=1(Y
2
i + σ2/n), and the variance of the posterior for µ is 4σ2(

∑d
i=1 Y

2
i )/n+ 2σ4d/n2.

If we were to examine frequentist properties, we would fix a θ, and then mean of the posterior
mean is

E

[
d∑
i=1

(Y 2
i + σ2/n)

]
= µ+ 2σ2d/n
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and the standard deviation of the posterior is on the order of σ
√
µ/n + σ2

√
d/n. So the

posterior is centered at the wrong point, and its spread is quite small. Using these two facts
along with Chebyshev’s inequality, you can see that a posterior credible interval will have
coverage that → 0 as d→∞.
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