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Today we will discuss the problem of model selection. Let’s start with some examples.

Example 1: A convenient, flexible parametric family is the mixture of Gaussians:

pθ(x) =
k∑
i=1

πiN(µi,Σi)

where
∑

i πi = 1. The parameters are θ = (π1, . . . , πk, µ1, . . . , µk,Σ1, . . . ,Σk). We also need
to choose the number of mixture components k and this is a model selection problem where
we have a sequence of models M1, . . . ,Mk indexed by the number of components.

Example 2: Polynomial order in regression. Suppose you use a polynomial to model the
regression function:

m(x) = E(Y |X = x) = β0 + β1x+ · · ·+ βpx
p.

You will need to choose the order of polynomial p. We can think of this as a sequence of
models M1, . . . ,Mp, . . . indexed by p.

Example 3: AR model. We have always assumes that the data are iid. An example of
non iid data is a time series where we expect the data to be correlated over time. Consider
a time series Y1, Y2, . . .. A common model is the AR (autoregressive model):

Yt = a1Yt−1 + a2Yt−2 + · · ·+ akYt−k + εt

where εt ∼ N(0, σ2). The number k is called the order of the model. We need to choose k.

Example 4: In survival analysis we want to model lifetime Y which is a non-negative random
variable. Two common models are the Weibull distribution pθ(x) = (k/λ)(x/λ)k−1e−(x/λ)

k

and the lognormal, where logX ∼ N(µ, σ2). This defines two different modelsM1 andM2.

Notice that models are often nested with increasing complexity. Choosing a large k can lead
to overfitting. Just picking the model with the highest likelihood will lead to always picking
the biggest model. There are two different goals in model selection:

1. Find the model that gives the best prediction (without assuming that any of the models
are correct). This is equivalent to: find the model whose estimated distribution is
closest to the true distribution.

2. Assume one of the models is the true model (the smallest model containing the true
density) and find the true model.
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We’ll talk about the following methods:

Cross-validation
AIC
BIC
Bayes.

Perhaps the only slightly counter-intuitive fact you need to remember is that when there is
a true model methods like cross-validation can fail to find it.

The basic take-aways are:

1. If your goal is prediction, you have a reasonable sample-size and you have a reasonable
computation budget use cross-validation.

2. If your goal is prediction, but you either have too small a sample or you have a very
low computational budget, you should consider using AIC.

3. If your goal is selecting the true model you should use BIC.

1 The Methods

CV: Cross-validation has different versions but the procedure is probably roughly familiar
to you. We train our models on a subset of the data and then evaluate and choose between
the models on the rest of the data. We then potentially re-shuffle the data, repeat, and
combine the results in some way. We will simplify this and just suppose throughout this
lecture that we do a train-test split.

AIC: AIC (Akaike Information Criterion) is a model selection rule that does not use
any sample-splitting. Informally, it is best understood as an asymptotic approximation to
CV. Formally, Stone showed in a classic paper that under assumptions AIC and CV are
asymptotically equivalent when using the MLE for each model.

BIC. BIC (Bayesian Information Criterion) can be thought of as an asymptotic approxima-
tion of a Bayesian approach.

2 Cross Validation

Denote the sample size by 2n. Split the data into two groups D1 and D2. (In practice we

often use many groups.) Using D1 we find the mle θ̂j for model Mj. Let pj(x) = p(x; θ̂j)
be te estimated density from model Mj. The idea is to choose j which minimizes K(p, pj)
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where p is the true density and

K(p, pj) =

∫
p(x) log

(
p(x)

pj(x)

)
dx

is the Kullback-Leibler distance. Notice that we do not necessarily assume that the true
density p is in any of the models.

Notice that minimizing K(p, pj) is the same as maximizing

Rj =

∫
p(x) log pj(x)dx.

We can estimate Rj from the second sample D2 by

R̂j =
1

n

∑
i∈D2

log p(Xi; θ̂j).

The score R̂j can also be thought of as a measure of how well we can predict future obser-

vations. If we did not split the data, R̂j would be biased: larger models will always lead to
a larger score.

We can now use the LLN to argue that if the test-set size goes to ∞ then our risk estimates
converge to their expectations, and then we will find the model/estimate with the lowest KL
to the true model. Let’s make this more precise. Assume that | log pθ(X)| ≤ B for every
θ and X that we care about (this can be relaxed using more complex techniques). From
Hoeffding’s inequality and the union bound:

P(max |Ri − E(Ri)| ≥ ε) ≤ 2M exp(−2nε2/(4B2)).

Let

εn =

√
4B2 log(2M/α)

n
.

Then

P(max
i
|Ri − E(Ri)| ≥ εn) ≤ α.

Let î = arg miniRi be the selected model and let i∗ = arg mini E(Ri) be the best model.
Then, with probability at least 1− α:

E(Rî) ≤ Rî + εn ≤ Ri∗ + εn ≤ E(Ri∗) + 2εn.

So the model we select will be sub-optimal by at most 2εn. In regression, we would use
exactly the same reasoning, but just replace the risk with the squared loss. Reasoning about
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K-fold cross-validation turns out to be much more challenging, because the data re-use
breaks independence assumptions.

The analysis above should remind you of the analysis we did before of Empirical Risk Min-
imization. The goals are slightly different, as is the final guarantee. It is worth thinking
about what exactly the data splitting buys you. In particular, we do not require uniform
convergence of the empirical to the true risk over all the model classesM1, . . . ,MM , rather
we only require a good estimate of the risk for the fixed models indexed by θ̂1, . . . , θ̂M .

3 AIC

Suppose we don’t want to use data-splitting because of lack of data or lack of computational
resources. We could try to estimate Rj by

R̂j =
1

n

∑
i

log p(Xi; θ̂j) = (1/n)`j(θ̂j)

but, as we discussed above, this is very biased. And the more parameters there are, ther
more biased this will be. Akaike proved that the bias is approximately equal to dj/n where
dj is the dimension of the model Mj. So a bias-adjusted estimator is

R̂j = (1/n)[`j(θ̂j)− dj].

For a variety of historical reasons, we will multiple by 2n which does not affect which model
is the maximizer. This leads to the criterion

AICj = 2`j(θ̂j)− 2dj.

We choose j to maximize AICj. It is best to think of this as an approximation to CV.

4 BIC

. The BIC crierion is

BICj = `j(θ̂j)−
dj
n

log n.

This is basically AIC but with a harsher penalty. This approach was proposed by Gideon
Schwartz based on the following Bayesian argument. We place prior probabilities ν1, . . . , νk
for each model. Then we put priors pj(θj) for the parameters in model Mj. By Bayes’
theorem

p(Mj|X1, . . . , Xn) =
p(X1, . . . , Xn|Mj)νj∑
s p(X1, . . . , Xn|Ms)νs

=
νj
∫
Lj(θj)dθj∑

s νs
∫
Ls(θs)dθs

.
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Schwartz showed that
log p(Mj|X1, . . . , Xn) ≈ BICj.

Suppose that the true density is in one of the models. Let Mj be the smallest model that

contains p. Then it can be shown that ĵ
P→ j where ĵ is the model chosen by BIC. We’ll

return to this point later.

5 Hypothesis Testing

In some cases we can frame model selection as a hypothesis testing problem. For example,
suppose that X1, . . . , Xn ∼ N(θ, 1) and that are two models are

M0 = {θ : θ = 0},
M1 = {θ : θ ∈ R}.

We can select a model by testing H0 : θ = 0 versus H0 : θ = 1. Notice that, if θ = 0, we
will choose the wrong model with probability α. But that’s ok since CV and AIC also can
choose the wrong model. But notice that hypothesis testing doesn’t provide any guarantee
about the selected model in terms of KL distance, for example.

6 Choosing the True Model?

Suppose that the true density is in one of the models. Let Mj be the smallest model that
contains p. We have seen that, asymptotically, BIC chooses this model. Noe we will show
that CV and AIC don’t do this. But thus is not a problem since that’s not their goal. We’ll
focus on the example above where the data re Normal and we are choosing betweenM0 and
M1.

Let us denote the mean of the training samples as µ̂tr and the mean of the testing samples
as µ̂te. Then

θ̂0 = 0, θ̂1 = µ̂tr.

Focus on the case where θ = 0. The difference between the cross-validation loss for the two
models is (proportional to):

1

n

n∑
i=1

X2
i −

1

n

n∑
i=1

(Xi − µ̂tr)
2 = −µ̂2

tr + 2µ̂trµ̂te,

and we select the wrong model if this quantity is greater than 0. We can re-write this as:
we select the wrong model if

(
√
nµ̂tr)

2 − 2(
√
nµ̂tr)(

√
n)µ̂te) < 0.
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Now we observe that,
√
ntrµ̂tr and

√
nteµ̂te are each independent N(0, 1) variables, so the

probability of choosing the wrong model is

P (Z2
1 − 2Z1Z2 < 0)

where Z1, Z2 ∼ N(0, 1). This is about 0.35 (no matter how large n is).

Again, this is not really a problem because choosing the true model is not the goal. Also,
even if we choose the wrong model, θ̂1 will be close to 0 so p(x; θ̂0) will be close to N(0, 1).

Now consider AIC. We select M1 if

1

n

n∑
i=1

X2
i ≥

1

n

n∑
i=1

(Xi − µ̂)2 +
1

n
.

Re-arranging this we see that we would select the wrong model (i.e. Model 1) if,

µ̂2 ≥ 2

n
.

This intuitively makes sense: if the mean is small in absolute value we select Model 0
and otherwise we select Model 1. Now nµ̂2 ∼ χ2

1 so the probability of choosing M1 is
P (χ2

1 > 2) = 0.16.

Now consder BIC. You can go through exactly the same calculation as above and see that
BIC would select the wrong model if,

µ̂2 ≥ log n

n
,

which has probability P (χ2
1 > log n) → 0. If µ 6= 0, you can check that the probability of

choosing Model 1 goes to 1. Thus BIC is model seletion consistent. Thus is true of BIC
more generally.

Finally, let us return to hypothesis testing. We would reject the null if

nµ̂2 ≥ χ2
1,α,

and this controls the Type I error (i.e. the error of incorrectly selecting the more complex
model) at α. More generally, we could imagine testing between pairs of models using the
LRT (using Wilks result for the asymptotic distributions). This procedure is very similar to
AIC but inflates the penalty just enough to ensure that we have some specified error control.

7 What to do?

The derivations of AIC and BIC depend on many technical assumptions about the model.
CV does not depend on any model assumptions. For this reason, CV is the better choice if
it is feasible.
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A difficult problem that we have not considered is how to account for model selection when
doing inference. This is a complicated topic. The simplest think, if we have lots of data, is
to keep some hold out data. After model selection, we use the hold out data which is not
affected by the model selection process.

Another issue that we have not considered is interpretability. Getting good predictions is
not the only goal. We might be willing to sacrifice a bit of prediction accuracy to have a
more interpretable model. This is an area of active research.
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