
Lecture Notes 26
36-705

Today we will discuss nonparametric density estimation and nonparametric regression. First,
we need to define kernels.

1 Kernels

A kernel function K(x) for x ∈ R is a function K such that
∫
K(x)dx = 1 and K is

symmetric, i.e.
∫
xK(x)dx = 0. We will also assume that K(x) ≥ 0 and

∫
x2K(x)dx.

Examples are: the Gaussian kernel

K(x) =
1√
2π
e−x

2/2

the boxcar kernel

K(x) = I(|x| < 1/2)

and the Epanechnikov

K(x) =
3

4
(1− x2)I(|x| < 1).

Given a kernel K and a number h > 0 called the bandwidth, we define

Kh(x) =
1

h
K
(x
h

)
.

Similarly, for x ∈ mathbbRd we define K : Rd → R where K is symmetric and integrates to
1. Then, given a symmetric positive definite bandwidth matrix H we define

KH(x) =
1

|H|
K(H−1x).

A common choice is to take H = hI and

KH(x) =
1

hd

∏
j

K
(xj
h

)
where K is a one-dimensional kernel.

1

2 Non-parametric Density Estimation

Let Y1, . . . , Yn ∼ p. We’ll focus on the case Yi ∈ R. We want to estimate p nonparametrically.
A common estimator is the kernel density estimator defined by

p̂(y) =
1

n

∑
i

Kh(Yi − y)

where Kh is a kernel with bandwidth h. You should think of h = hn as a number that
decreases with sample size. We will assume that p′′(y) <∞.

Let’s analyze this estimator. First

E[p̂(y)] =

∫
Kh(u− y)p(u)du =

∫
K(t)p(y + th)dt

≈
∫
K(t)

[
p(y) + thp′(y) +

t2h2

2
p′′(y)

]
dt

= p(y) + hp′(y)

∫
tK(t)dt+

h2p′′(y)

2

∫
t2K(t)dt

= p(y) + c1(y)h2

where c1(y) = p′′(y)
∫
t2K(t)dt/2. So the bias is c1(y)h2.

Now we find the variance. We have

Var[p̂(y)] =
1

n
Var[Kh(Y − y)] =

1

n
E[K2

h(Y − y)]− 1

n
(E[Kh(Y − y)])2.

Now

E[K2
h(Y − y)] =

∫
1

h2
K2((u− y)/h)p(u)du =

1

h

∫
K2(t)p(y + th)dt

=
1

h

∫
K2(t)[p(y) + thp′(y) + · · ·]dt ≈ c2p(y)

h

where c2 =
∫
t2K(t)dt. Next

(E[Kh(Y − y)])2 ≈ (p(y) + c1(y)h2)2 ≈ p2(y).

So

Var[p̂(y)] ≈ c2np(y)

nh
+
p(y)

n
≈ p(y)

nh
.

Note that, if h → 0 and nh → ∞ as n → ∞ then the bias and variance go to 0 and hence

p̂(y)
P→ p(y).

2

Next, consider the integrated mean squared error IMSE:

IMSE = E[

∫
(p̂(y)− p(y))2dy] =

∫
E[(p̂(y)− p(y))2]dy

=

∫ (
c21(y)h4 +

c2p(y)

nh

)
dy = c1h

4 +
c2
nh

where c1 =
∫
c2(y)dy.

Here we say the bias-variance tradeoff. As h increases, the bias increases and the variance
decreases and vice versa. The IMSE is minimized by choosing

hn =

(
c2

4c1n

)1/5

≈
(

1

n

)1/5

.

With this choice, we see that

IMSE = O

(
1

n

)4/5

.

In practice, h is usually chosen by a version of cross-validation. In d dimensions it turns out
that the IMSE is O(n−4/(4+d)). The effect of dimension is brutal and is called the curse of
dimensionality.

3 Non-parametric Regression

We observe (X1, Y1), . . . , (Xn, Yn) ∼ P and our goal is to estimate the regression function

r(x) = E[Y |X = x].

We integrated squared loss

L(r̂, r) =

∫
(r̂(x)− r(x))2dx.

The risk is then

R(r̂, r) = E
(∫

(r̂(x)− r(x))2dx

)
.

We will assume that r′′(y) <∞.

As in the case of point estimation we have a bias variance decomposition. First we define
the point-wise bias:

b(x) = E(r̂(x))− r(x),

3

and the point-wise variance:

v(x) = E
(
r̂(x)− E(r̂(x))

)2
.

Now, as before we can verify that:

R(r̂, r) =

∫
b2(x)dx+

∫
v(x)dx.

A natural strategy in non-parametric regression is to locally average the data, i.e. our
estimate of the regression function at any point will be the average of the Y values in a small
neighborhood of the point.

The width of this neighborhood will determine the bias and variance. Too large a neighbor-
hood will result in high bias and low variance (this is called oversmoothing) and too small a
neighborhood will result in low bias but large variance (this is known as undersmoothing).

4 Optimal Regression Function

Suppose we knew the joint distribution over (X, Y). One could alternatively begin by defining
the risk of an estimate r̂ as

R(r̂) = E(Y − r̂(X))2.

This risk simply measures the prediction error, i.e. the expected error we make in predicting
Y when we use the function r̂(X). This risk is minimized by the conditional expectation,
i.e. we have the following theorem.

Theorem 1 The risk R is minimized by

r(x) = E(Y |X = x).

Proof: Let g(x) be any function of x. Then

R(g) = E(Y − g(X))2 = E(Y − r(X) + r(X)− g(X))2

= E(Y − r(X))2 + E(r(X)− g(X))2 + 2E((Y − r(X))(r(X)− g(X)))

≥ E(Y − r(X))2 + 2E((Y − r(X))(r(X)− g(X)))

= E(Y − r(X))2 + 2EE

(
(Y − r(X))(r(X)− g(X))

∣∣∣∣∣ X
)

= E(Y − r(X))2 + 2E

(
(E(Y |X)− r(X))(r(X)− g(X))

)

= E(Y − r(X))2 + 2E

(
(r(X)− r(X))(r(X)− g(X))

)
= E(Y − r(X))2 = R(r).

4

5 Kernel Regression

One of the most basic ways of doing non-parametric regression is called kernel regression.
We will analyze kernel regression when we only have one covariate. The general case is not
very different. The estimator is defined as:

r̂(x) =
n∑
i=1

wi(x)Yi,

where the weights assign more importance to points near x. This is called a kernel regressor
when the weights are chosen according to a kernel, i.e. we have weights:

wi(x) =
K
(
x−Xi

h

)∑n
i=1K

(
x−Xi

h

) =
Kh(Xi − x)∑
jKh(Xi − x)

where, as before, the bandwidth h controls the amount of smoothing.

To analyze this estimator, note that we can write

Yi = r(Xi) + εi

where εi has mean 0. Now

r̂(x) =

∑
i YiKh(Xi − x)∑
iKh(Xi − x)

=
1
n

∑
i YiKh(Xi − x)

1
n

∑
iKh(Xi − x)

=
1
n

∑
i YiKh(Xi − x)

p̂(x)
=

1
n

∑
i YiKh(Xi − x)

p(x) + oP (1)

≈
1
n

∑
i YiKh(Xi − x)

p(x)
.

Let’s find the mean and variance of the numerator. We have

E[Y Kh(X − x)] =

∫ ∫
yKh(u− x)p(x, y)dudy =

∫
Kh(u− x)

∫
yp(y|u)dyp(u)du

=

∫
Kh(u− x)r(u)p(u)du =

∫
K(t)r(x+ th)p(x+ th)dt

≈
∫
K(t)

[
r(x) + thr′(x) +

t2h2

2
r′′(x)

] [
p(x) + thp′(x) +

t2h2

2
p′′(x)

]
dt

= r(x)p(x) +
ch2

2
[r(x)p′′(x) + 2r′(x)p′(x) + r′′(x)p(x)]

5

where c =
∫
t2K(t). Hence,

E[r̂(x)] = r(x) + Ch2.

By a similar calculation

Var[r̂(x)] =
C

nh
.

We conclude that

IMSE = ch4 +
c

nh

where now we use c generically to define constants. As in density estimation, the best
bandwidth is hn � n−1/5 and the risk is n−4/5.

The analysis reveals that the bias depends on p′(x) and p(x). These terms can be removed
by using better estimators.

6 The general case

So far we assumes that r′′(y) < ∞. More generally, suppose that the βth derivative of r(x)
is bounded, and we are in d-dimensions. In this case the bias will be roughly:

b2(x) ≈ h2β,

and the variance:

v(x) ≈ 1

nhd
,

and balancing these will lead to the rate of convergence:

R(r̂, r) ≈ n−2β/(2β+d).

This reveals another crucial feature of non-parametrics. In linear regression, the rate of
convergence is typically something like:

R(β̂, β) ≈ d

n
.

In both cases, the situation gets worse as d increases, however in non-parametrics the situ-
ation gets exponentially worse. This is often colloquially referred to as the curse of dimen-
sionality.

6

7 RKHS regression

There is another method also referred to as kernel regression. More precisely, it is Repro-
ducing Kernel Hilbert Space (RKHS) regression. We will not cover this in much detail but
here is te general idea.

A symmetric bivariate function K : X × X 7→ R is positive semidefinite (PSD) if for all
integers n ≥ 1 and elements {xi}ni=1 where each xi ∈ X , the n× n matrix K with elements
Kij := K(xi, xj) is positive semidefinite.

Here are a few standard examples:

1. Linear kernel: When X = Rd then K(xi, xj) = 〈xi, xj〉 =
∑d

u=1 xiuxju, is the linear
kernel and is PSD.

2. Polynomial kernel: Again when X = Rd then K(xi, xj) = (〈xi, xj〉)m, is the homoge-
nous polynomial kernel of degree m ≥ 2. This kernel is also PSD. The inhomogenous
polynomial kernel K(xi, xj) = (1 + 〈xi, xj〉)m is also PSD.

3. Gaussian kernel: Perhaps the most popular kernel in machine learning is the Gaussian
kernel. Here we take K(xi, xj) = exp(−‖xi − xj‖22/(2σ2)).

Given dataa {(X1, Y1), . . . , (Xn, Yn)} we are going to estimate the function r by a function
rα which we will assume has the form:

rα(x) =
n∑
i=1

αiK(xi, x),

where we need to estimate the αi’s. To do this we will minimize a least-squares type objective:

α̂ = arg min
α

1

2

n∑
i=1

(Yi − rα(Xi))
2 + λPen(rα).

The penalty we will use is something called an RKHS norm penalization and it takes the
form:

Pen(rα) = αTKα,

where K is the gram matrix, i.e. Kij = K(xi, xj). This penalty encourages the function to
be smooth but this is not easy to see without going into more detail. Observe that we can
write:

rα(X1)
rα(X2)

...
rα(Xn)

 = Kα,

7

so the RKHS regression objective simplifies to:

α̂ = arg min
α

1

2
‖Y −Kα‖22 + λαTKα,

which we can solve in closed form (just by taking derivatives and setting to zero) as:

α̂ = (K + λI)−1Y.

Our estimated regression function then takes the form:

rα̂(x) =
n∑
i=1

α̂iK(Xi, x).

Superficially there are similarities between RKHS regression and kernel regression. They
both produce a function whose value at a given point is a weighted combination of the
Yi values at other points. In kernel regression the weights are easy to interpret, while in
RKHS regression the weights are the solution to a least squares problem and are not directly
interpretable.

From a practical standpoint, RKHS regression typically has two tuning parameters: the
penalty parameter λ and usually some RKHS parameter (for instance the RKHS kernel
bandwidth for a Gaussian kernel).

There are two types of problems one could ponder: (1) we want to fit a function that is
Lipschitz or Holder smooth (as we analyzed in the first half): in this case, it is perhaps
natural to use kernel regression and somewhat more artificial to use RKHS regression (2) we
want to fit a function in a particular RKHS, in this case it is perhaps more natural to use
RKHS regression.

From a theoretical standpoint, RKHS regression is usually analyzed using variants of the
Rademacher complexity results we saw earlier in the course, i.e. they are not directly an-
alyzed in terms of the bias and variance (this is because the RKHS regression procedure
is naturally viewed as ERM over an RKHS). This means that the rates of convergence are
typically specified in terms of properties of the RKHS and the data-generating distribution,
i.e. a typical measure of complexity of an RKHS is the decay-rate of eigenvalues of the kernel
gram matrix. This is quite unlike kernel regression where the function class is something
simple (Lipschitz functions), and the measure of complexity is just the smoothness of the
function.

RKHS regression is not the only alternative to kernel regression. Often you will see methods
like k-NN regression (where you predict at a point by averaging the y values of the k-closest
points), local polynomial regression (where you chop up the domain and fit (low-degree)
polynomials in each piece of the domain) and orthogonal series estimators or projection esti-
mators (where you expand the regression function in a orthogonal basis – say of sine/cosine
type functions – and then estimate the coefficients in this basis).

8

