
Lecture Notes 5

Today we will start off by deriving some of the implications between the different modes of
convergence. Then we will prove the CLT.

1 Quadratic mean =⇒ convergence in probability

Suppose that X1, . . . , Xn converges in quadratic mean to X, then fix an ε > 0,

P(|Xn −X| ≥ ε) = P(|Xn −X|2 ≥ ε2) ≤ E(Xn −X)2

ε2
→ 0,

showing convergence in probability.

At a high-level the convergence in qm requirement penalizes Xn for having large deviations
from X by both how frequent the deviation is but also by the magnitude of the deviation. On
the other hand convergence in probability only penalizes you for how frequent the deviation
is and hence is a weaker notion of convergence.

Counterexample to reverse: Suppose we take U ∼ U [0, 1] and defineXn =
√
nI[0,1/n](U),

then Xn converges in probability to 0 but does not converge in quadratic mean to 0.

To see this:

P(|Xn| ≥ ε) = P(
√
nI[0,1/n](U) ≥ ε) = P(U ∈ [0, 1/n]) =

1

n
→ 0.

On the other hand,

E(Xn −X)2 = EX2
n = nP(U ∈ [0, 1/n]) = 1.

Observe that most of the time the RV Xn takes the value 0, but when it does not it takes a
huge value.

1.1 Convergence in probability =⇒ convergence in distribution

This one is a little bit involved but perhaps also useful to know. The idea roughly is to trap
the CDF of Xn by the CDF of X with an interval whose length converges to 0.

Suppose that Xn  X. We fix a point x where the CDF FX(x) is continuous. Choose an
arbitrary ε > 0. We have that,

FXn(x) = P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X ≥ x+ ε)

≤ P(X ≤ x+ ε) + P(|Xn −X| ≥ ε)

= FX(x+ ε) + P(|Xn −X| ≥ ε).
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Now,

FX(x− ε) = P(X ≤ x− ε) = P(X ≤ x− ε,Xn ≤ x) + P(X ≤ x− ε,Xn ≥ x)

≤ FXn(x) + P(|Xn −X| ≥ ε).

Putting these two together we have,

FX(x− ε)− P(|Xn −X| ≥ ε) ≤ FXn(x) ≤ FX(x+ ε) + P(|Xn −X| ≥ ε).

Intuitively, now as n gets large the two probabilities converge to 0, and since ε was chosen
arbitrarily we can let ε→ 0 and use the continuity of FX(x) at x to conclude that FXn(x)→
FX(x).

Slightly more rigorously, we cannot assume that the limit of FXn(x) exists so we instead
need to use lim infs and lim sups (do not worry about this if you have not seen it before).
Formally, we would take the lim sup of the first half to obtain that,

lim sup
n→∞

FXn(x) ≤ FX(x+ ε),

and similarly that,

lim inf
n→∞

FXn(x) ≥ FX(x− ε),

and conclude that,

FX(x− ε) ≤ lim inf
n→∞

FXn(x) ≤ lim sup
n→∞

FXn(x) ≤ FX(x+ ε).

Now since ε > 0 was arbitrary, we can take the limit as ε→ 0 and use continuity to conclude
the desired convergence in distribution.

Counterexample to reverse: This is easy since two random variables having the same
distribution does not in any sense mean that they are close. For example, let X,X1, X2,∼
N(0, 1). They all have the same cdf so Xn  X. But P (|Xn −X| > ε) does not go to 0.

An important exception: An important exception is that when X is deterministic then
convergence in distribution implies convergence in probability. Suppose that P (X = c) = 1.
Fix ε > 0. Then

P(|Xn − c| > ε) = P(Xn > ε+ c) + P(Xn < c− ε)
= FXn(c− ε) + 1− FXn(c+ ε)

→ FX(c− ε) + 1− FX(c+ ε) = 0.

using convergence in distribution and the fact that at both c+ ε, and c− ε, the distribution

function FX is continuous. So Xn  c implies that Xn
P→ c.
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2 Other things that are very useful to know

1. Continuous mapping theorem. If a sequence X1, . . . , Xn converges in probability
to X then for any continuous function h, h(X1), . . . , h(Xn) converges in probability to
h(X). The same is true for convergence in distribution.

2. A consequence of the continuous mapping theorem. If Xn
P→ X and Yn

P→ Y then

Xn + Yn
P→ X + Y . Similarly, XnYn

P→ XY .

3. Slutsky’s theorem. If Xn  X and Yn  Y we cannot conclude that the sum con-
verges. The one exception is known as Slutsky’s theorem. It says that if Yn converges
in distribution to a constant c, and X converges in distribution to X: then Xn + Yn
converges in distribution to X + c and XnYn converges in distribution to cX.

4. Convergence of moments is not implied by convergence in probability. Con-
vergence in probability is actually quite weak as a form of convergence. We have seen
previously that it does not imply quadratic mean convergence. Now we will see that
it does not even imply something much simpler.

If we have Xn converges in probability to some constant c, then it is not the case that
E[Xn] converges to c. Here is an example of this non-convergence. Let Xn be 0 with
probability 1−1/n and n2 with probability 1/n. Then Xn converges to 0 in probability,
but E[Xn] = n→∞.

This is a manifestation of the same phenomena as we saw in the counterexample to
qm convergence. On the events when |Xn| ≥ ε it has a huge value and this affects the
moments but does not affect the convergence in probability.

3 The Central Limit Theorem (CLT)

We will now state and prove a form of the central limit theorem, which is one of the most
famous and important examples of convergence in distribution. Let X1, X2, . . . , Xn be a
sequence of independent random variables with mean µ and variance σ2.

Theorem 1 Assume that the mgf E[exp(tXi)] is finite for t in a neighborhood around zero.
Let Xn = n−1

∑
iXi. Let

Zn =

√
n(Xn − µ)

σ
.

then Zn converges in distribution to Z ∼ N(0, 1), that is Zn  Z. Hence, as n→∞,

P(Zn ≤ t)→ Φ(t)

3



for all t, where

Φ(t) =

∫ t

−∞

1√
2π
e−s

2/sds.

The central limit theorem is incredibly general. It does not matter what the distribution of
Xi is, the average Sn converges in distribution to a Gaussian (under fairly mild assumptions).
The most general version of the CLT does not require any assumption about the mgf. It
just requires that the mean and variance are finite. The interpretation of the CLT is that
Zn ≈ N(0, 1). In other words,

Xn ≈ N(µ, σ2/n).

It can be shown that

sup
t
|P(Zn ≤ t)− Φ(t)| ≤ 33

4

µ3

σ3
√
n

where µ3 = E[|Xi − µ|3].

We should try to understand why the CLT might be useful. Roughly, the CLT allows to
make approximate probability statements about averages using corresponding statements
about standard normals. Here is an example that we will discuss in detail later: confidence
intervals.

Suppose for now that we are averaging iid random variables with known variance σ (and
unknown mean µ). Typically one would also estimate the variance but this will not change
much. We would like to construct a confidence interval for the unknown mean. We specify
α ∈ (0, 1) and we find a random set C such that

P(µ ∈ C) ≥ 1− α.

We might take
C = [µ̂− t, µ̂+ t]

where µ̂ = Xn. Then

P(µ ∈ [µ̂− t, µ̂+ t]) = P(|µ̂− µ| ≤ t).

So we would like to choose t to make this probability equal to 1− α. Now

P(|µ̂− µ| ≤ t) = P
(√

n|µ̂− µ|
σ

≤
√
nt

σ

)
≈ P(|Z| ≤ t)

where Z ∼ N(0, 1). In the last step we used the CLT. Let Φ denote the cdf of Z and define

zα = Φ−1(1− α).

Note that
P (Z > zα/2) = P (Z < −zα/2) =

α

2
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so that P (−zα/2 < Z < zα/2) = 1− α. So we want to set
√
nt

σ
= zα/2

that is,

t =
σzα/2√
n
.

To summarize: if we define

C =

[
µ̂−

σzα/2√
n
, µ̂+

σzα/2√
n

]
,

then
P(µ ∈ C)→ 1− α

as n→∞. The convergence is due to the CLT.

3.1 Preliminaries

First we note that
E[Zn] = 0

and
Var[Zn] = 1.

Also note that if X1, . . . , Xn ∼ N(0, 1) then Zn is exactly N(0, 1).

Calculus with mgfs: We need a few simple facts about mgfs that we will quickly prove.

Fact 1: If X and Y are independent with mgfs MX and MY then Z = X + Y has mgf
MZ(t) = MX(t)MY (t).

Proof: We note that,

MZ(t) = E[exp(t(X + Y )] = E[exp(tX)]E[exp(tY )],

using independence.

Fact 2: If X has mgf MX then Y = a+ bX has mgf, MY (t) = exp(at)MX(bt).

Proof: We just use the definition,

MY (t) = E[exp(at+ btX)] = exp(at)E[exp(btX)].

Fact 3: We will not prove this one (strictly speaking one needs to invoke the dominated
convergence theorem) but it should be familiar to you. The derivative of the mgf at 0 gives
us moments, i.e.

M
(r)
X (0) = E[Xr].

5



Fact 4: The most important result that we also will not prove is that we can show con-
vergence in distribution by showing convergence of the mgfs. Let X1, . . . , Xn be a sequence
of random variables with mgfs MX1 , . . . ,MXn . Let X be a random variable with mfg MX .
If for all t in an open interval around 0 we have that, MXn(t)→ MX(t), then Xn converges
in distribution to X.

Fact 5: If Z ∼ N(0, 1) then MZ(t) = et
2/2.

3.2 Proof of the CLT

Note that √
n(Xn − µ)

σ
=

1√
n

∑
i

Ai

where

Ai =
Xi − µ
σ

.

Let M(t) be the mgf for Ai. Since Ai has mean 0 and variance 1, we have that M(0) = 1,
M ′(0) = 0 and M ′′(0) = 1. Now

MZn(t) = E[etZn ] = E[e
t√
n

∑
i Ai ] =

∏
i

E[e
t√
n
Ai ] = M(t/

√
n)n.

Expanding M :

M(t/
√
n) ≈M(0) +

t√
n
M ′(0) +

t2

2n
M ′′(0) = 1 +

t2

2n

and so

M(t/
√
n)n ≈

(
1 +

t2

2n

)n
→ et

2/2

which is the mgf of a N(0,1). Here we used the fact that,

lim
n→∞

(1 + x/n)n → exp(x).
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