
Lecture Notes 7
36-705

In today’s lecture we will begin to study what are known as uniform laws or uniform tail
bounds. Roughly, these are LLNs or tail bounds that apply to a collection of random
variables taken together. Results of the type we will develop in the next few lectures form
the theoretical basis for the study of statistical estimators, and are core topics in statistics
and machine learning. In statistics this area of study is known as empirical process theory.
We’ll start by studying these from a relatively classical viewpoint, discussing what are called
Glivenko-Cantelli theorems, and then focus on providing motivation.

1 Uniform convergence of the CDF

A classical question that was already on the mind of probabilists in the early 1930s was:

How can one estimate the CDF of a univariate random variable given a random sample?

Recall that the cdf is defined by F (x) = P (X ≤ x). Suppose we observe X1, . . . , Xn ∼ F .
The most common estimator is the empirical cdf defined by

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x).

This makes sense since F (x) is the probability that a random X is less than or equal to

x and F̂n(x) is the observed proportion of of observations less than or equal to x. At each
value x, we essentiall have a coin-flipping experiment. But we are simultaneously conducting
infinitely many such experiments. Note that F̂n is a non-decreasing step-function.

You might have noticed that unlike in a classical statistical estimation problem we are not
estimating a simple parameter, rather we are estimating an entire function.

So let us back up a little bit. Suppose I fixed a value x and we decided to try to estimate
FX(x). We could use the empirical CDF at x, but this time it is a rather simple problem.
Observe that,

E[F̂n(x)] =
1

n

n∑
i=1

E[I(Xi ≤ x)] = P(X ≤ x) = F (x).

The indicators are bounded random variables so we could just use Hoeffding’s bound to
conclude that,

P(|F̂n(x)− FX(x)| ≥ ε) ≤ 2 exp(−2nε2).
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This shows that for every point x, we can use simple tail bounds to say that the empirical
CDF is close to the true CDF. Does this imply that the whole function F̂n is close to F? It
does not. This is the difference between pointwise and uniform convergence.

To see that there is a difference, consider the function g(x) = 0 for all x. Let

gn(x) =

{
1 if x = n

0 otherwise.

For any fixed x we have that |gn(x) − g(x)| → 0 as n → ∞. But supx |gn(x) − g(x)| = 1
which does not go to 0.

Back to the cdf, we would like to understand the behaviour of

∆n = sup
x∈R
|F̂n(x)− FX(x)|.

Reasoning about ∆n requires us to reason about the CDF everywhere, hence the name uni-
form bounds or uniform LLNs. The Glivenko-Cantelli theorem says that for any distribution,
∆n converges to 0 in probability.

Theorem 1 Glivenko-Cantelli Theorem. Let X1, . . . , Xn ∼ F and define

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x).

Then

sup
x
|F̂n(x)− F (x)| P→ 0.

Notes:

1. The Glivenko-Cantelli theorem is like a WLLN but it is a uniform WLLN that ensures
that the WLLN is true simultaeously at every point x ∈ R.

2. There is a corresponding strong theorem that guarantees convergence almost surely.

3. One should pay particular attention to the fact that we can estimate the CDF of a
random variable with no assumptions. This is contrast to estimating the density of
a random variable which typically requires strong smoothness assumptions (we will
re-visit this much later in the course).
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2 Empirical Processes

For any set A, define the empirical probability as

Pn(A) =
1

n

n∑
i=1

I(Xi ∈ A).

The quantity ∆n defined earlier can be written as,

∆n = sup
A∈A
|Pn(A)− P(A)|,

where A is a collection of sets,

A = {A(x) : A(x) = (−∞, x]} ,

since in this case, P(A(x)) = FX(x).

One could generalize the CDF question from the previous section further to ask more gener-
ally about other interesting collections of sets A, i.e. we are interested in collections of sets
A, for which we have uniform convergence, i.e.

∆n(A) = sup
A∈A
|Pn(A)− P(A)|,

converges to 0 (in probability, say). This line of inquiry forms the basis for what is called
Vapnik-Cervonenkis theory who were amongst the first to ask this general question.

Even more generally, one can replace the indicators with general (integrable) functions, i.e.
let F be a class of integrable, real-valued functions, and suppose we have an i.i.d. sample
X1, . . . , Xn ∼ P , then we could be interested in,

∆n(F) = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f ]

∣∣∣∣∣ .
This quantity is known as an empirical process and empirical process theory is the area
of statistics that asks questions about the convergence in probability, almost surely or in
distribution for the quantity ∆(F) for interesting classes of functions F . If F = {IA(·) :
A ∈ A} for some class of sets A, then we get back ∆n(A).

If ∆n(F)
p→ 0 then we say that F is a Glivenko-Cantelli class. The class of functions: We

refer to classes for which ∆(F)
p→ 0, as a Glivenko-Cantelli class. The class of functions:

F = {I(−∞, x], x ∈ R},

which defines the uniform convergence of the CDF is an example of a Glivenko-Cantelli class.
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3 Failure of Glivenko-Cantelli

In general, very complex classes of functions or sets will fail to be Glivenko-Cantelli and one
of the goals of the next few lectures is to find ways to measure the complexity of a class
of functions. For example, suppose we draw X1, . . . , Xn ∼ P where P is some continuous
distribution over [0, 1]. Suppose further that A is all subsets of [0, 1] with finitely many
elements.

Since the distribution is continuous we have that, P(A) = 0 for each A ∈ A, however for the
finite set {X1, . . . , Xn} we have that Pn(A) = 1, i.e.

∆(A) = sup
A∈A
|Pn(A)− P(A)| = 1,

no matter how large n is. So the collection of sets A is not Glivenko-Cantelli. Roughly, the
collection of sets is “too large”.

4 Estimation of Statistical Functionals

We discussed estimating the CDF of a random variable. In this section we provide several
examples of problems where we use estimates of the CDF. Furthermore, as we will see, we
can develop a unified understanding of such estimators using the Glivenko-Cantelli theorem.

Often we want to estimate some quantity which can be written as a simple functional of
the CDF, and a natural estimate just replaces the true CDF with the empirical CDF (such
estimators are known as plug-in estimators). As an aside, a functional is just a function of
a function. A statistical functional is a functional of the CDF. Here are some examples:

1. Expectation Functionals: For a given function g, we can view the usual empirical
estimator of its expectation as a plug-in estimate where we replace the population CDF
by the empirical CDF,

Ê[g(X)] =
1

n

n∑
i=1

g(Xi) =

∫
x

g(x)dF̂n(x).

2. Quantile Functionals: For an α ∈ [0, 1], the α-th quantile of a distribution is given
as:

Qα(F ) = inf{t ∈ R|F (t) ≥ α}.

Taking α = 0.5 gives the median. A natural plug-in estimator of Qα(F ) is to simply

take Qα(F̂n).
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3. Goodness-of-fit Functionals: We will re-visit this topic in more detail when we
talk about hypothesis testing but often in data analysis we want to test the hypothesis
that data we have are i.i.d. from some known distribution F0. The rough idea is we
form a statistic to test this hypothesis which (hopefully) takes large values when the
distribution is not F0 and takes small values otherwise. Typical tests of this form
include the Kolmogorov-Smirnov test, where we compute the plug-in quantity:

T̂KS = sup
x∈R
|F̂n(x)− F0(x)|,

which is natural because if the true distribution is F0 we know by the Glivenko-Cantelli
theorem that TKS is small. Similarly, one can use the Cramer-von Mises test which
uses the plug-in statistic,

T̂CvM =

∫
x

(F̂n(x)− F0(x))2dF0(x).

There are many other statistical functionals for which the usual estimators can be thought
of as plug-in estimators. For example: the variance, correlation, and higher moments can all
be expressed in this fashion.

In each of the above cases we are interested in estimating some functional γ(F ) and we

use the plug-in estimator γ(F̂n). Analogous to the continuous mapping theorem, there is
a Glivenko-Cantelli theorem that provides a WLLN for these estimators. We need to first
define a notion of continuity. Suppose γ satisfies the property that for every ε > 0, there is
a δ > 0 such that if,

sup
x
|F̂n(x)− F (x)| ≤ δ,

then

|γ(F )− γ(F̂n)| ≤ ε.

For such functionals γ, it is a simple consequence of the Glivenko-Cantelli theorem that
γ(F̂n) converges in probability to γ(F ).

5 Risk Minimization

Perhaps the most compelling motivation for studying uniform convergence is to understand
a procedure known as empirical risk minimization. Estimators of this type include maxi-
mum likelihood estimators, and many estimators we encounter in machine learning (SVMs,
Boosting and so on). We will study this in detail in the next lecture.
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Binary Classification: In the typical binary classification setting we observe a training
set {(X1, Y1), . . . , (Xn, Yn)} that we assume are drawn i.i.d from some distribution P . Each
Xi ∈ Rd, Yi ∈ {−1,+1}.

A classifier f : Rd 7→ {−1,+1} is simply a function that takes an x outputs a label in
{−1,+1}. The broad goal of classification is to try to find a function that has low error on
future unseen data, i.e. we want a function that has low mis-classification error: P(f(X) 6=
y).

For a given classifier f we can estimate its mis-classification error (risk) as:

R̂n(f) =
1

n

n∑
i=1

I(f(Xi) 6= yi),

which is simply its error on the training set. If f is some fixed classifier we know by Hoeffd-
ing’s bound (why?) that,

P(|R̂n(f)− P(f(X) 6= y)| ≥ t) ≤ 2 exp(−2nt2).

If we are trying to pick a good classifier from some set of classifiers F , then a natural way
to do this is to find the one that looks best on the training set, i.e. to choose

f̂ = arg min
f∈F

R̂n(f).

This procedure is known as empirical risk minimization. The terminology will be clearer
later on in the course. For now though, we would like to understand this procedure better.
How do we argue that in some cases this procedure will indeed select a good classifier? This
question is intricately tied to uniform convergence.

Let f ∗ be the best classifier in F . We would like to bound the excess risk of the classifier we
chose, i.e.

∆ = P(f̂(X) 6= y)− P(f ∗(X) 6= y).

The typical way to do this is to consider the decomposition:

∆ = P(f̂(X) 6= y)− R̂n(f̂)︸ ︷︷ ︸
T1

+ R̂n(f̂)− R̂n(f ∗)︸ ︷︷ ︸
T2

+ R̂n(f ∗)− P(f ∗(X) 6= y)︸ ︷︷ ︸
T3

.

Since f̂ minimizes the empirical risk we know that T2 ≤ 0. We know that T3 is small just
by the Hoeffding argument from before, since f ∗ is a fixed classifier (i.e. does not depend on
the training data).

The key point, one that you should really think carefully about is that we cannot use
Hoeffding for the first term. The reason is that the classifier f̂ is data dependent so its
empirical risk is not the sum of independent RVs.
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Instead we have to rely on a uniform convergence bound, i.e. suppose we can show that
with probability at least 1− δ/2,

sup
f∈F

[
P(f(X) 6= y)− R̂n(f)

]
≤ Θ,

then we can conclude that the excess risk with probability at least 1− δ satisfies

∆ = P(f̂(X) 6= y)− P(f ∗(X) 6= y) ≤ Θ +

√
2 log(2/δ)

n
,

so everything boils down to showing uniform convergence of the empirical risk to the true
error over the collection of classifiers we are interested in.

We will discuss this is more detail later.

7


