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As an example, use the hot dog calorie data from Example 11.6.2. In this
example, p= 4. We shall use a prior distribution in which λ0 = α0 = 1, β0 = 0.1,
u0 = 0.001, and ψ0 = 170. We use k = 6 Markov chains and do m= 100 burn-in
simulations, which turn out to be more than enough to make the maximum of all
nine F statistics less than 1 + 0.44m. We then run each of the six Markov chains
another 10,000 iterations. The samples from the posterior distribution allow us
to answer any questions that we might have about the parameters, including
some that we would not have been able to answer using the analysis done in
Chapter 11. For example, the posterior means and standard deviations of some
of the parameters are listed in Table 12.6. To see how different the variances are,
we can estimate the probability that the variance of one group is at least 2.25
times as high as that of another group by computing the fraction of iterations

ℓ in which at least one τ
(ℓ)
i /τ

(ℓ)
j > 2.25. The result is 0.4, indicating that there

is some chance that at least some of the variances are different. If the variances
are different, the ANOVA calculations in Chapter 11 are not justified.

We can also address the question of how much difference there is between
the µi’s. For comparison, we shall do the same calculations that we did in

Example 12.3.7. In 99 percent of the 60,000 simulations, at least one |µ
(ℓ)
i −µ

(ℓ)
j |>

26.35. In about one-half of the simulations, all |µ
(ℓ)
i − µ

(ℓ)
j | > 2.224. And in

99 percent of the simulations, the average of the differences was at least 13.78.
Figure 12.9 contains a plot of the sample c.d.f.’s of the largest, smallest, and
average of the six |µi − µj| differences. Careful examination of the results in this
example shows that the four µi’s appear to be closer together than we would have
thought after the analysis of Example 12.3.7. This is typical of what occurs when
we use a proper prior in a hierarchical model. In Example 12.3.7, the µi’s were
all independent, and they did not have a common unknown mean in the prior.
In Example 12.5.6, the µi’s all have a common prior distribution with mean ψ,
which is an additional unknown parameter. The estimation of this additional
parameter allows the posterior distributions of the µi’s to be pulled toward a

Table 12.6 Posterior means and standard deviations for
some parameters in Example 12.5.6

Type Beef Meat Poultry Specialty

i 1 2 3 4

E(µi|y) 156.6 158.3 120.5 159.6

(V ar(µi|y))
1/2 4.893 5.825 5.521 7.615

E(1/τi|y) 495.6 608.5 542.9 568.2

(V ar(1/τi|y))
1/2 166.0 221.2 201.6 307.4

E(ψ|y) = 151.0 (V ar(ψ|y))1/2 = 11.16
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Figure 12.9 Sample c.d.f.’s of the maximum, average, and mini-
mum of the six |µi− µj| differences for Example 12.5.6.

location that is near the average of all of the samples. With these data, the
overall sample average is 147.60. ◭

Prediction

All of the calculations done in the examples of this section have concerned
functions of the parameters. The sample from the posterior distribution that
we obtain from Gibbs sampling can also be used to make predictions and form
prediction intervals for future observations. The most straightforward way to
make predictions is to simulate the future data conditional on each value of the
parameter from the posterior sample. Although there are more efficient methods
for predicting, this method is easy to describe and evaluate.

Example 12.5.7 Calories in Hot Dogs. In Example 12.5.6, we might be concerned with how
different we should expect the calorie counts of two hot dogs to be. For example,
let Y1 and Y3 be future calorie counts for hot dogs of the beef and poultry
varieties, respectively. We can form a prediction interval for D = Y1 − Y3 as
follows. For each iteration ℓ, let the simulated parameter vector be

θ(ℓ) =
(

µ
(ℓ)
1 , µ

(ℓ)
2 , µ

(ℓ)
3 , µ

(ℓ)
4 , τ

(ℓ)
1 , τ

(ℓ)
2 , τ

(ℓ)
3 , τ

(ℓ)
4 , ψ(ℓ), β(ℓ)

)

.

For each ℓ, simulate a beef hot dog calorie count Y
(ℓ)
1 having the normal

distribution with mean µ
(ℓ)
1 and variance 1/τ

(ℓ)
1 . Also simulate a poultry hot

dog calorie count Y
(ℓ)
3 having the normal distribution with mean µ

(ℓ)
3 and

variance 1/τ
(ℓ)
3 . Then compute D(ℓ) = Y

(ℓ)
1 − Y

(ℓ)
3 . Sample quantiles of the values

D(1), . . . ,D(60000) can be used to estimate quantiles of the distribution of D.
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For example, suppose that we want a 90 percent prediction interval for D.
We simulate 60,000 D(ℓ) values as above and find the 0.05 and 0.95 sample
quantiles to be −18.49 and 90.63, which are then the endpoints of our prediction
interval. To assess how close the simulation estimators are to the actual quantiles
of the distribution of D, we compute the simulation standard errors of the two
endpoints. For the samples from each of the k=6 Markov chains, we can compute
the sample 0.05 quantiles of our D values. We can then use these values as
Z1, . . . , Z6 in Eq. (12.5.1) to compute a value S. Our simulation standard error

is then S/61/2. We can then repeat this for the sample 0.95 quantiles. For the two
endpoints of our interval, the simulation standard errors are 0.2228 and 0.4346,
respectively. These simulation standard errors are fairly small compared to the
length of the prediction interval. ◭


