
Homework 10 (due Thursday, June 27 at 11:59pm)

1. (20 pts) Consider a random walk process on the integers X = {Xi}∞i=0

with P (X0 = x0) = 1 for some x0 ∈ Z. The process has state space
S = Z, the set of integer numbers. Furthermore, at any time i ∈
{0, 1, . . . } we have

P (Xi+1 = xi + 1|Xi = xi) = p

P (Xi+1 = xi − 1|Xi = xi) = 1− p.

• Does the random process X satisfy the Markov property?

• Consider the new process Y = {Yi}∞i=0 with Yi =
∑

j≤iXj . Does
the random process Y satisfy the Markov property?

Solution:

• Yes, X satisfies the Markov property: for any i ∈ {0, 1, . . . }, the
state of the process X at time i+ 1 only depends on the state of
the process at time i.

• Let Yi =
∑

j≤iXi. Notice that Yi+1 = Yi +Xi+1. We have

P (Yi+1 = yi+1|Yi = yi, Yi−1 = yi−1, . . . , Y0 = y0)

= P (Yi +Xi+1 = yi+1|Yi = yi, Yi−1 = yi−1, . . . , Y0 = y0)

= P (yi +Xi+1 = yi+1|Yi = yi, Yi−1 = yi−1, . . . , Y0 = y0)

= P (Xi+1 = yi+1 − yi|Yi = yi, Yi−1 = yi−1)

= P (Xi+1 = yi+1 − yi|Xi = yi − yi−1)

=

{
p if yi+1 − yi = yi − yi−1 + 1

1− p if yi+1 − yi = yi − yi−1 − 1

=

{
p if yi+1 = 1 + 2yi − yi−1
1− p if yi+1 = −1 + 2yi − yi−1

Thus,

P (Yi+1 = yi+1|Yi = yi, Yi−1 = yi−1, . . . , Y0 = y0)

= P (Yi+1 = yi+1|Yi = yi, Yi−1 = yi−1)

and Y does not satisfy the Markov property.
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2. (20 pts) For a Markov chain with state space {a, b, c, d, e, f} and tran-
sition probability matrix

P =



1 0 0 0 0 0 0
0 0 0 0 0 0 1
.3 .1 .1 .1 0 .2 .2
0 0 0 1 0 0 0
0 .3 .1 0 .2 0 .4
.2 .4 0 .3 0 0 .1
0 1 0 0 0 0 0


Classify the states (recurrent and transient). Does the chain admit a
limiting distribution?

Solution:
The chains contains 3 recurrent classes: {a}, {b, g} and {d}. The
others are transient. This chain does not admit a limiting distribution
because there are more than one recurrent class (i.e. the limiting
distribution depends on the initial state).

3. (20 pts) Let X0, X1, · · · be a Markov Chain with state space {1, 2, 3},
initial distribution pX0 = (1/5, ?, 2/5) and transition probability ma-
trix

P =

1/5 4/5 ?
2/5 1/2 ?
0 1/10 ?


Fill in the entries for P and pX0 , and answer the following:

(a) Compute P (X1 = 1|X0 = 2).

(b) The row vector pX0 describes the distribution of X0 . What is
the row vector describing the distribution of X1 ?

(c) What is P (X1 = 3)?

(d) What is the row vector describing the distribution of X2 ?

(e) What is P (X2 = 1)?

Solution:
The probabilities along the rows of the transition matrix must sum to
1, as must the initial distribution. Hence we have

pX0 = (1/5, 2/5, 2/5),

and
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P =

 1/5 4/5 0
2/5 1/2 1/10
0 1/10 9/10


(a) (3 points) P (X1 = 1|X0 = 2) = P21 = 2/5 = .4

(b) (3 points) The row vector describing X1 is obtained by matrix
multiplication:

pX1 = pX0 ∗ P = (.2, .4, .4)

 .2 .8 0
.4 .5 .1
0 .1 .9

 = (.2, .4, .4)

Note that this matrix multiplication implements the law of total
probability for each value that X1 could take, namely:

P (X1 = k) =
3∑

i=1

P (X1 = k|X0 = i)P (X0 = i)

(c) (3 points) P (X1 = 3) = pX1 [3] = .4 using the distribution calcu-
lated in the previous part.

(d) (3 points) To get the row vector describing X2 we need to use the
2-step transition matrix P2 which is just the square of P :

P2 = P ∗P =

 .2 .8 0
.4 .5 .1
0 .1 .9

 .2 .8 0
.4 .5 .1
0 .1 .9

 =

 .36 .56 .08
.28 .58 .14
.04 .14 .82


Now we compute the probability distribution for X2 using the
law of total probability again:

P (X2 = k) =
3∑

i=1

P (X2 = k|X0 = i)P (X0 = i).

Or in matrix form:

pX2 = pX0 ∗ P2 = (.2, .4, .4)

 .36 .56 .08
.28 .58 .14
.04 .14 .82

 = (.2, .4, .4)
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(e) (3 points) P (X2 = 1) = pX2 [1] = .2 using the distribution calcu-
lated in the previous part.

4. (20 pts) The Ehrenfest model for heat exchange can be described as
follows: two urns, A and B, contain a total of 2N balls. At every step,
each ball is equally likely to be drawn among all the 2N balls. It is
then put into the other urn. Let Xn be the number of balls in urn A
immediately after the n-th step.

(a) Show that X0, X1, X2, . . . is a Markov Chain and find the transi-
tion probability matrix.

(b) Let µi,n = E[Xn|X0 = i], i = 0, . . . , 2N . Show that

µi,n = 1 + (1− 1/N)µi,n−1, for all n > 0.

(c) Show that
µi,n = N + (i−N)(1− 1/N)n

(d) Find limn→∞E[Xn].

Solution:

(a) The number of balls in urn A on next state depends only on that
on the current state, and Xn is defined for 0, 1, .., N . Thus, Xn

is a Markov Chain.

Let the transition probability matrix be P = pij , where pij is the
probability from state i to state j for time t− 1 to time t. Given
that the process is in state i at time t − 1, the probability that
the selected random integer corresponds to a number on a ball
in urn A is i

2N . Then, there will be j = i − 1 balls in the urn
A at time t. Similarly, the probability that the selected integer
corresponds to a number on a ball in urn B is 2N−i

2N = 1− i
2N at

time t-1, in which case there will be j = i+ 1 balls in the urn A
at time t. Thus, if 0 < i < N

pij =


i

2N , for j = i− 1
1− i

2N , for j = i+ 1
0, otherwise

and p0,0 = 1, p0,1 = 1, p2N,2N = 0 and p2N,2N−1 = 1
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(b) Notice that

E[Xn|Xn−1 = j] = (j−1)
j

2N
+(j+1)

(
1− j

2N

)
= 1+j

(
1− 1

N

)
Then

E[Xn|X0 = i] =
∑

j∈S E[Xn|Xn−1 = j,X0 = 1]P (Xn−1 = j|X0 = i)

=
∑

j∈S
(
1 + j

(
1− 1

N

))
P (Xn−1 = j|X0 = i)

= 1 +
(
1− 1

N

)
µi,n−1

Writing Xn = Xn−1+(Xn−Xn−1) and conditioning this equation
on Xn−1 and X0, we obtain

µi,n = 1 + (1− 1

N
)µi,n−1, for all n > 0.

(c) Using induction, we iterate part (b) to obtain

µi,n = N + (1−N)(1− 1

N
)n

(d)
limn→∞E[Xn] = N

5. (20 pts) Suppose a student in 36-217 can either be up-to-date (U)
with them material covered in class or behind (B). The probability of
a student being up-to-date or behind on a particular week depends
on whether he/she has been behind or up-do-date in the previous two
weeks. In particular

• If behind both this week and last week, the student will be behind
next week as well with probability 0.8

• If up-to-date both this week and last week, the student will be
up-to-date next week as well with probability 0.9.

• If behind last week and up-to-date this week, the student will be
behind with probability 0.5.

• If up-to-date last week and behind this week, the student will be
behind with probability 0.7.

(a) Is this a first-order Markov chain? Why?

(b) Explain how you can enlarge the state space and obtain a first-
order Markov chain.
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(c) More generally, if you have a k-th order Markov chain on a state
space of cardinality m, explain how you can always derive a first-
order Markov chain on a larger state space and find the cardinal-
ity if this enlarged state space.

(a) (2 points) This is not a first-order Markov chain since the prob-
ability of being in a given state depends on the states of the two
previous steps.

(b) (3 points) We can consider the state space {U,B}2 = {(U,U), (U,B), (B,U), (B,B)}
which is the set of paths that matter for determining the states
of the next step. We consider the new random variable Yt =
(Xt, Xt−1). In order to define the probabilities of the new first-
order Markov chain we define

P (Yt = (Xt, Xt−1) = (i, j)|Yt−1 = (Xt−1, Xt−2) = (k, l)) =

{
P (Xt = i|Xt−1 = k,Xt−2 = l) if j = k

0 if j 6= k

Thus, in this case we obtain the probability transition matrix for
the states {(U,U), (U,B), (B,U), (B,B)}

0.9 0.1 0 0
0 0 0.3 0.7

0.5 0.5 0 0
0 0 0.2 0.8


(c) (4 points) In general if we have a state space {E1, . . . Em} we

can consider the new state space {E1, . . . Em}k with cardinality
mk which contents the set of paths that matter for determining
the states of the next step. We consider the new random variable
Yt = (Xt, Xt−1, . . . , Xt−(k−1)). In order to define the probabilities
of the new first-order Markov chain we define

P (Yt = (Xt, Xt−1, . . . , Xt−(k−1)) = (i0, i1, . . . , ik−1)|Yt−1 = (Xt−1, Xt−2, . . . , Xt−k) = (j1, j2, . . . , jk))

=

{
P (Xt = i0|Xt−1 = j1, Xt−2 = j2, . . . , Xt−k = jk) if i1 = j1, . . . , ik−1 = jk−1

0 otherwise
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