
Homework 5 (due Tuesday, June 11th at 11:59pm)

(Warm up: 1-10). These exercises are easy, and they serve the only purpose
of making you think (and review) a bit more deeply about the basic proper-
ties of r.v.’s and expectation. I will provide no solutions for these exercises.
Please come to office hour if you wish to discuss them.
(Hw: 11-16). These exercises are of standard difficulty.

1. (4 pts) Let the r.v. X ∈ [0, b] have E[X] = a with 0 < a < b. Find
upper bounds for

• P (X ≥ c).
• P (X ≤ c).

for some c ∈ (0, b).

2. (4 pts) Let the cdf of the r.v. X be FX(x) = 1− e−λx for λ ∈ (0,∞).
Find fX(x).

3. (4 pts) Let the cdf of the r.v. X be FX(x) =
∑k

i=0

(
n
i

)
pi(1− p)n−i for

0 < k ≤ n. Find pX(x).

4. (4 pts) Let the pdf of the r.v. X be fX(x) = min{x, 2−x}1(0 ≤ x ≤ 2).
Compute P (1/4 ≤ X ≤ 5/4). Remark: given that I changed this
exercise 3 times, you will get full score for any answer you provide
(but not for a blank answer).

5. (4 pts) Let the pmf of the r.v. X be pX(x) = c1A(x) where A =
{0, 1

100 ,
2

100 , . . . ,
99
100 , 1}. Compute the normalizing constant c and P (0.3 ≤

X ≤ 0.7).

6. (4 pts) Let the support of the r.v.’s X1 and X2 satisfy all of the fol-
lowing constraints:

• x21 + x22 ≤ 2

• 1
2x1 ≤ x2 ≤ 2x1 and x1 ≥ 0 (a cone)

• x2 ≤ 1
3

Draw the support on a 2D plane.

7. (4 pts) In class we said that

∂φ(
√
y)

∂y
=

1

2
√
y
fY (
√
y)
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where fY is the pdf of the standard normal. Prove this claim.
Hint: you will need Leibniz rule for integration:

∂

∂x

∫ b(x)

a(x)
f(x, t)dt

= f(x, b(x))
∂

∂x
b(x)− f(x, a(x))

∂

∂x
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt

8. (4 pts) Find the cdf of Y = X3 where X ∼ Uniform(0, 1).
Be careful to write the support carefully.

9. (4 pts) Let a ∈ R and X be some continuous r.v.. Prove the following
properties using the pdf’s:

• Cov(X,X) = V (X) (you can prove it without pdf’s)

• Cov(aX, bY ) = abCov(X,Y )

• E[X1X2|X2 = x2] = x2E[X1|X2] (trivial)

• EX2 [EX1 [X1X2X3|X2, X3]|X3] = x3EX2 [X2E[X1|X2, X3]|X3]

10. (4 pts) Let X1 ∼ Bernoulli(p) and X2 ∼ Bernoulli(f(|X1 − 1/2|)) for
f(y) = yα for α > 0. Compute E[X2].

11. (10 pts) Consider independent trials, each of which results in outcome
i, i = 0, . . . , k, with probability pi,

∑k
i=0 pi = 1. Let N be the number

of trials needed to obtain an outcome that is not equal to 0 and let X
be that outcome.

(a) Find P (N = n), n ≥ 1.

(b) Find P (X = j), j = 1, . . . , k.

(c) Are N and X independent?

Solution:

(a) Consider a successful trial as getting any nonzero element. Thus,
the success chance is p = 1 − p0. Notice that in this context, N
is geometric(p), so P (N = n) = (1− p0)pn−10 .

(b) Intuitively, X is more likely to be values corresponding to higher
pi. In fact, we are just rescaling the pi’s to exclude zero.
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Let M be the distribution of any trial, so P (M = m) = pm for
m = 0, . . . , k. Then:
P (X = j) = P (M = j|M 6= 0) = P (M=j∩M 6=0)

P (M 6=0) =
pj

1−p0
Note that this is equivalent to

pj
p1+p2+...+pk

.

(c) Yes, they are independent. When the first nonzero occurs, and
which specific nonzero value it is, are independent, because know-
ing that the value is nonzero on the first trial vs. on the 20th trial
doesn’t tell you anything other than it being nonzero.

12. (10 pts) Let X1, X2
iid∼ Uniform(0,1). 1 Let Y = X1 + X2. Compute

FY (y) = P (X1 +X2 ≤ y).
Hint: follow very closely what has been done in Quiz 3, exercise 3.

Solution:
Following the same steps as in the the proof in the quiz, you should
obtain the following cdf.

FY (y) =


0 if y < 0
y2

2 if 0 ≤ y ≤ 1

−y2

2 + 2y − 1 if 1 < y ≤ 2

1 o/w

13. (10 pts) Let X,Y, Z be three continuous r.v.’s. Prove the following
statements using the pdf’s:

(a) X ⊥⊥ (Y,Z) implies X ⊥⊥ Y and X ⊥⊥ Z
(b) X ⊥⊥ (Y,Z) implies X ⊥⊥ Y |Z and X ⊥⊥ Z|Y
(c) X ⊥⊥ Y |Z and X ⊥⊥ Z imply together that X ⊥⊥ (Y,Z)

Notice that the assumption of continuity is just to make the notation
easier.

Solution:
Let fQ be the pdf of the r.v. Q. Let’s start from the first statement.

1X1 and X2 are two independent and identically distributed r.v.’s with Uniform be-
tween between 0 and 1, that is

fX(x) = 1(x ∈ [0, 1]).
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(a) For the first part of the implication,

fX,Y (x, y) =

∫
fX,Y,Z(x, y, z)dz

=

∫
fX(x)fY,Z(y, z)dz = fX(x)fY (y)

∫
fZ|Y=y(z)dz

= fX(x)fY (y)

The proof for the second part follows exactly the same strategy.

(b) For the first part of the implication,

fX,Y |Z(x, y) = fX|(Y,Z)(x)fY |Z(y)

= fX(x)fY |Z(y) = fX|Z(x)fY |Z(y)

where in the last equality we used the implication of the first
statement. The second part of the implication follows the same
proof.

(c)

fX,Y,Z(x, y, z) = fX|Y,Z(x)fY,Z(y, z)

= fX|Z(x)fY,Z(y, z) = fX(x)fY,Z(y, z)

14. (10 pts) Let X ∼ Beta(α, β) and Y ∼ Bernoulli(X) with y ∈ {0, 1}
being its realization. Compute the pdf of X conditional on Y , that is
pX|Y=y.

Solution:
In this exercise we are going Bayesian!
By Bayes theorem we know that

pX|Y=y(x) =
pY |X=x(y)pX(x)

pY (y)
∝ pY |X=x(y)pX(x)

since the denominator is just a normalizing constant. Now,

pY |X=x(y)pX(x) ∝ xy(1− x)1−yxα−1(1− x)β−1

= xα+y−1(1− x)β−y.

Therefore we obtained the kernel of the distribution, and we recognize
that this probability density function belongs to the family of Beta
distributions. Consequently we can just conclude that

X|Y = y ∼ Beta(α+ y, β + 1− y).
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15. (10 pts) For two r.v.’s X,Y , prove that

V (Y ) = E[V (Y |X)] + V (E[Y |X]).

Solution:

V (Y ) = E[(Y − E[Y ])2]

= E[(Y − E[Y |X] + E[Y |X]− E[Y ])2]

= E[V (Y |X)]− 2E[(Y − E[Y |X])(E[Y ]− E[Y |X])] + E[(E[Y |X]− E[Y ])2]

Let’s focus on the last term.

E[(E[Y |X]− E[Y ])2] = E[(E[Y |X]− E[E[Y |X]])2] = V (E[Y |X])

by the tower property of expectation. Now, we also need to prove that
the term in the middle is equal to 0. This is a bit more tricky, but for
the same reason you can see that

E[(Y − E[Y |X])(E[Y ]− E[Y |X])]

= E[Y ]2 + E[E[Y |X]2]− E[Y E[Y |X]]− E[E[Y ]E[Y |X]]

= E[Y ]2 + E[E[Y |X]2]− E[E[Y |X]E[Y |X]]− E[Y ]E[E[Y |X]]

= E[Y 2] + E[E[Y |X]2]− E[E[Y |X]2]− E[Y ]2 = 0.

16. (10 pts) We are going to prove a useful inequality, I’ll guide you
through the steps.
Let X ∈ [xl, xm].

(a) Find the minimizer t of h(t) = E[(X − t)2].
Hint: you can either take the first two derivatives - the second to
check that it’s a minimum - or add/subtract E[X].

(b) Conclude the fact above that

V (X) ≤ h
(
xl + xm

2

)
.

(c) Prove that

h

(
xl + xm

2

)
≤ 1

4
E[((X − xl)− (X − xm))2]

Hint: remember that X + Y ≤ X − Y for X ≥ 0 and Y ≤ 0.
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(d) Finally conclude that

V (X) ≤ (xm − xl)2

4
.

Solution:
This is known as Popoviciu’s inequality! Let’s prove it.

• Taking the derivative:

∂h(t)

∂t
= −2E[X] + 2t = 0 =⇒ t = E[X]

∂2h(t)

∂t2
= 2 > 0

Alternatively,

E[(X − E[X] + E[X]− t)2] = E[(X − E[X])2] + (E[X]− t)2

where the first term does not depend on t, hence the minimum
will be given by the minimization of the second term. This occurs
when t = E[X].

• V (X) = h(E[X]) ≤ h((xm + xl)/2).

• Using the hint, we have

E

[
(X − xl + xm)

2
)2
]

=
1

4
E[((X − xl) + (X − xm))2]

≤ 1

4
E[((X − xl)− (X − xm))2] =

1

4
(xm − xl)2

• By the results in the second and third bullet points, we now have

V (X) ≤ 1

4
(xm − xl)2.
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