Homework 6 (due Friday, June 14th at 11:59pm)

1. (10 pts) Let X, Y, Z be three random variables such that E(X|Z) = 3Z, E(Y|Z) = 1, and E(XY|Z) = 4Z. Assume furthermore that E(Z) = 0. Are X and Y uncorrelated?

Solution:

We have

$$Cov(X,Y) = E[Cov(X,Y|Z)] + Cov[E(X|Z), E(Y|Z)]$$

= $E[E(XY|Z) - E(X|Z)E(Y|Z)] + Cov(3Z,1)$
= $E(4Z - 3Z * 1) + 3Cov(Z,1) = E(Z) + 3 * 0 = 0 + 0 = 0.$

It follows that X and Y are uncorrelated.

(15 pts) Let the r.v. X ~Poisson(λ) with λ ∈ N₊. Let Y = (X − λ)². Find the pmf of Y.
Solution:
It is clear that m₁(u) = 0 for u < 0. Then, for √u ∈ N.

It is clear that $p_Y(y) = 0$ for y < 0. Then, for $\sqrt{y} \in \mathbb{N}_+$,

$$p_Y(y) = P(Y = y) = P((X - \lambda)^2 = y)$$

= $P(X - \lambda = -\sqrt{y}) + P(X - \lambda = \sqrt{y})$
= $P(X = \lambda - \sqrt{y}) + P(X = \lambda + \sqrt{y})$

Therefore

$$p_Y(y) = \begin{cases} \frac{\lambda^{\lambda+\sqrt{y}}e^{-\lambda}}{(\lambda+\sqrt{y})!} & \text{if } \sqrt{y} \in \mathbb{N}_+ \text{ and } \lambda < \sqrt{y} \\ \frac{\lambda^{\lambda+\sqrt{y}}e^{-\lambda}}{(\lambda+\sqrt{y})!} + \frac{\lambda^{\lambda-\sqrt{y}}e^{-\lambda}}{(\lambda-\sqrt{y})!} & \text{if } \sqrt{y} \in \mathbb{N}_+ \text{ and } \lambda \ge \sqrt{y} \\ 0 \text{ o/w} \end{cases}$$

Here is some code to perform this experiment via simulation.

Figure 1: Distributions for exercise 1.

3. (10 pts) Let the r.v. X have pdf

$$f_X(x) = 4x^3 \mathbb{1}(0 < x \le 1).$$

Let Y = (X + 1)/X. Find the pdf of Y.

Solution:

First, notice that $Y \in [2, \infty)$. Therefore for $y \ge 2$,

$$P(Y \le y) = P(X + 1 \le yX)$$

= 1 - P $\left(X \le \frac{1}{y - 1}\right)$ = 1 - F_X $\left(\frac{1}{y - 1}\right)$ = 1 - $\left(\frac{1}{y - 1}\right)^4$

Therefore the pdf is

$$f_Y(y) = \begin{cases} 4\left(\frac{1}{y-1}\right)^5 & \text{for } y \ge 2\\ 0 & \text{o/w} \end{cases}$$

4. (10 pts) Let $X \sim f_X$ with

$$f_X(x) = \frac{b}{x^2} \mathbb{1}_{[b,\infty)}(x)$$

and let $U \sim \text{Uniform}(0, 1)$. Find a function g such that g(U) has the same distribution of X.

Solution:

Using the result of exercise 5, we need to set $g = F_X^{-1}$. We have

$$F_X(x) = \begin{cases} 0 \text{ if } x < b\\ \int_b^x f_X(y) \, dy \text{ if } x \ge b \end{cases} = \begin{cases} 0 \text{ if } x < b\\ \int_b^x \frac{b}{y^2} \, dy \text{ if } x \ge b \end{cases}$$
$$= \begin{cases} 0 \text{ if } x < b\\ -\frac{b}{y} \Big|_b^x \text{ if } x \ge b \end{cases} = \begin{cases} 0 \text{ if } x < b\\ 1 - \frac{b}{x} \text{ if } x \ge b. \end{cases}$$

It follows that

$$g(x) = F_Y^{-1}(x) = \frac{b}{1-x}$$

5. (20 pts) Let $X_1, X_2 \stackrel{iid}{\sim}$ Uniform(0,1). Compute $E[X_1/X_2]$. Solution: (Solution 1):

$$E\left[\frac{X_1}{X_2}\right] = E\left[X_1\right]E\left[\frac{1}{X_2}\right]$$

where

$$E\left[\frac{1}{X_2}\right] = \int_0^1 \frac{1}{x} dx = +\infty$$

hence

$$E\left[\frac{1}{X_2}\right] = +\infty.$$

(Solution 2):

Alternatively, we can go with the hard way.¹ For every $x \in (0, \infty)$:

$$P\left(\frac{X_1}{X_2} \le x\right) = \mathbb{E}_{X_1}[\mathbb{E}_{X_2}[\mathbb{1}(X_1 \le xX_2)|X_2]]$$

= $\int_0^1 \int_0^1 \mathbb{1}(x_1 \le xx_2)dx_1dx_2 = \int_0^1 \int_0^{\min\{xx_2,1\}} dx_1dx_2$
= $\int_0^1 xx_2\mathbb{1}(xx_2 \le 1)dx_2 + \int_0^1 \mathbb{1}(xx_2 > 1)dx_2$
= $\int_0^1 xx_2\mathbb{1}(x_2 \le 1/x)dx_2 + \int_0^1 \mathbb{1}(x_2 > 1/x)dx_2$
= $\int_0^{\min\{1,1/x\}} xx_2dx_2 + \mathbb{1}(x > 1) \int_{1/x}^1 dx_2$
= $\mathbb{1}(x > 1) \left(x \int_0^{1/x} x_2dx_2 + \int_{1/x}^1 dx_2\right) + \mathbb{1}(x \le 1)x \int_0^1 x_2dx_2$
= $\left(1 - \frac{1}{2x}\right)\mathbb{1}(x > 1) + \frac{x}{2}\mathbb{1}(x \le 1).$

Therefore the pdf is

$$f_{X_1/X_2}(x) = \frac{1}{2x^2}\mathbb{1}(x > 1) + \frac{1}{2}\mathbb{1}(0 < x \le 1).$$

Therefore, calling $Y = X_1/X_2$,

$$E[Y] = \int_{1}^{\infty} \frac{1}{2y} dy + \frac{1}{2} = \frac{1}{2} \log(y)|_{1}^{\infty} + \frac{1}{2} = \infty.$$

6. (20 pts) Consider the scores (random variables) of the student in this class X_1, \ldots, X_n . For now consider them to be continuous. We have good reasons to believe that the following versions of the scores

$$Y_i = \frac{X_i}{100}$$

for i = 1, ..., n be distributed, identically and independently, as Beta with parameters $\alpha > 0$ and $\beta = 1$, that is $Y_1, ..., Y_n \stackrel{iid}{\sim} \text{Beta}(\alpha, 1)$.

(a) Before receiving the actual result, you would like to know what's the probability that you will get a score higher than 80, that is P(X > 80). Compute it, knowing that $\alpha = 2$.

¹However, there is no need since the r.v.'s are independent.

- (b) Given that $x_1 = \cdots = x_{n-1} = 60$, what is $P(X_n > 80)$? Again, you know that $\alpha = 2$.
- (c) Now let $\alpha \in \mathbb{R}_+$, while β is still 1. You have received your scores, x_1, \ldots, x_n and you want to find out
 - what kind of shape this Beta distribution has, that is find the MLE of α given x_1, \ldots, x_n .
 - what is the mean θ of the scores, given that the distribution of Y is a Beta $(\hat{\alpha}, \beta)$ with $\hat{\alpha}$ being the MLE. Compute it for n = 4 and $\mathbf{x} = (90, 90, 90, 80)$.
 - If Riccardo decides to change the mean θ (of the distribution) to $\theta' = \theta + (1 \theta)/2$ to increase the grades, what is the MLE of θ' ?

Hint (1) 1: you probably need to consider the log-likelihood for y_1, \ldots, y_n (the transformed scores).

$$\ell(y_1, \dots, y_n | \alpha, \beta) = \log \prod_{i=1}^n \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1}.$$

where $y_1, ..., y_n$ are $y_i = x_i / 100$ for i = 1, ..., n.

Hint (2/3): here you need to apply the same (invariant) property.

Solution:

(a)

$$P(X > 80) = P(Y > 0.8) = 1 - \int_0^{4/5} x dx = 1 - \frac{8}{25} = \frac{17}{25}.$$

- (b) It's still 17/25!!! The draws are independent and identically distributed.
- (c) Consider y_1, \ldots, y_n where $y_i = x_i/100$ for $i = 1, \ldots, n$. Now the pdf of Y is

$$f_Y(y;\alpha) = \alpha y^{\alpha-1} \mathbb{1}(y \in [0,1])$$

Therefore for $y \in [0, 1]$,

$$\frac{\partial}{\partial \alpha} \sum_{i=1}^{n} \log(\alpha y_i^{\alpha-1}) = \frac{\partial}{\partial \alpha} \left[n \log \alpha + \sum_{i=1}^{n} (\alpha - 1) \log y_i \right]$$
$$= \frac{n}{\alpha} + \sum_{i=1}^{n} \log y_i \implies \hat{\alpha} = -\frac{n}{\sum_{i=1}^{n} \log y_i}.$$

• We can compute $\hat{\alpha}$ for this data, and we obtain $\hat{\alpha} \approx 7.4$. Now, by the invariance property of the MLE, we have

$$\theta = \frac{\hat{\alpha}}{\hat{\alpha} + 1} \cdot 100 \approx 88.$$

Compare it to the mean (without knowledge of the Beta distribution), that is 87.5!

- Again, here we use the invariance property of the MLE. The result is $\hat{\alpha}' \approx 0.94$.
- 7. (15 pts) Let x_1, \ldots, x_n be the realizations of $X_1, \ldots, X_n \stackrel{iid}{\sim} f_X$ with

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \mathbb{1}(x \in [0, \infty)).$$

- Find the MLE of β .²
- Find the MLE of $\beta' = \beta^2$.
- Find the MLE of λ for x_1, \ldots, x_n when $X_1, \ldots, X_n \stackrel{iid}{\sim} f_X$ with

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}(x \in [0, \infty)).$$

You can use the results from the previous steps.³

Solution:

• Let's find the MLE for β first.

$$\frac{\partial}{\partial\beta} \left(n\alpha \log\beta - n\log\Gamma(\alpha) + (\alpha - 1)\sum_{i=1}^{n}\log x_i - \beta\sum_{i=1}^{n}x_i \right) = 0$$
$$\implies \frac{n\alpha}{\beta} - \sum_{i=1}^{n}x_i = 0 \implies \hat{\beta} = \frac{n\alpha}{\sum_{i=1}^{n}x_i}.$$

• Using the invariance property, we obtain

$$\hat{\beta}' = \left(\frac{n\alpha}{\sum_{i=1}^n x_i}\right)^2.$$

• Since $Exp(\beta) = Beta(1, \beta)$, we have

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} x_i}.$$

²Notice that the MLE for α is much harder to find due to the term log $\Gamma(\alpha)$.

³Given that we have already done it in class, this should be straightforward.