
Homework 8 (due Thursday, June 20th at 11:59pm)

1. (10 pts) Let X1, . . . , Xn ∼ FX where FX is the X ∼ Beta(α, β) with
α = 1, β = 2. Let n = 200. Find an approximation for

P

(
log(X̄n) ≤ −1

2

)
.

Solution:

P
(
X̄n ≤ e−

1
2

)
= P

(√
200 · 3

√
2 ·
(
X̄n −

1

3

)
≤
√

200 · 3
√

2

(
e−

1
2 − 1

3

))
≈ φ

(
3
√

400

(
e−

1
2 − 1

3

))
≈ φ(16.39184) ≈ 1.

2. (10 pts) Let V1, . . . , Vn
iid∼ Beta(1, θ). Let W1 = V1, W2 = V2(1 −

V1), . . . , Wn = Vn
∏n−1
i=1 (1− Vi).

• Prove that 1− Vi ∼ Beta(θ, 1).

• Prove that E[1−
∑n

i=1Wi]→ 0 as n→∞.1

Hint: To prove this, rewrite the 1−
∑n

i=1Wi in terms of the Vi’s.
In order to do this, notice the following pattern:

1−W1 = 1− V1

1−W1 −W2 = 1− V1 − V2(1− V1) = (1− V1)(1− V2)

. . .

Solution:

• Using the method of change of variables we obtain

fY (y) = θyθ−1

from which we can conclude that Y ∼ Beta(θ, 1).

• By induction you can show that

1−
n∑
i=1

Wi =

n∏
i=1

(1− Vi).

1This is called convergence in mean.
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Then

E

[
n∏
i=1

(1− Vi)

]
=

n∏
i=1

E[1− Vi] =

(
θ

1 + θ

)n
n→∞−→ 0.

This is the first (informal) part of the stick-breaking construction
of the Dirichlet process.

3. (20 pts) Let X1, . . . , Xn
iid∼ FX where

F(X1,...,Xn)(x1, . . . , xn) =

n∏
i=1

(1− e−xi)1(xi > 0).

• Derive fX1(x).

• Show that the m.g.f. for X1 is

mX1(t) =
1

1− t

for t ∈ (−ε, ε). What is the value of ε?

• Show that the m.g.f. of X̄n =
∑n

i=1Xi/n is

mX̄n
(t) =

[
mX1

(
t

n

)]n
again, ∀t/n ∈ (−ε, ε) as in the example above.

• Show that

P

(
n∑
i=1

Xi

n
> a

)
≤ e−2t

for a = 3.
Hint: You do not really need the previous step for this proof, but
you can use it.

Solution:

• First, notice that

F(X1,...,Xn)(x1, . . . , xn) =
n∏
i=1

FXi(xi) by independence
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therefore we can now derive fX1 from FX1 .

fX1(x) =
∂FX1(x)

∂x
= e−x1(x > 0).

This means that X1 ∼ Exponential(1).

•

mX(t) = E[etX ] =

∫ ∞
0

etxe−xdx =

∫ ∞
0

ex(t−1)dx

=
ex(t−1)

t− 1

∣∣∣∣∞
0

=

{
1

1−t if t < 1

∞ o/w

therefore we conclude that ε = 1, that is t ∈ (−1, 1).

•

mX̄n
(t) = E

[
etX̄n

]
= E

[
e

t
n

∑n
i=1

]
=

n∏
i=1

E
[
e

t
n
Xi

]
=
(
E
[
e

t
n
X1

])n
=

[
mX1

(
t

n

)]n
=

[
1

1− t
n

]n
=

(
n

n− t

)n
.

where the second to last inequality is thanks to the fact that the
r.v.’s are identically distributed. This holds for t/n ∈ (−1, 1).

• For a ∈ R and t ≥ 0,

P (X̄n ≥ a) = P (tX̄n ≥ ta)

= P
(
etX̄n ≥ eta

)
≤
E
[
etX̄n

]
eta

by Markov’s

=

(
n

n− t

)n 1

eta
=

(
1− t

n

)−n
e−ta

n→∞−→ et

eta

Hence for a = 3, we obtain, for n→∞,

P (X̄n ≥ 3) ≤ e−2t

4. (15 pts) Assume that X1, · · · , Xn have finite moment generating func-
tions; i.e. mXi(t) <∞ for all t, for all i = 1, · · · , n. Prove the central
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limit theorem using moment generating functions.
Hint: consier the random variable

Tn =
Sn − nµ
σ
√
n

.

Then study the mgf of Tn, and its convergence: you need to prove

that it converges to e
t2

2 , since this is the mgf of a standard normal.
Remember that for a standard normal all even central moments are
zero!

Solutions:
Let Tn = Sn−nµ

σ
√
n

, for the sum Sn =
∑

iXi. Also denote the mean and

variance of X as E(Xi) = µ and V (Xi)σ
2. Then, we want to prove

that
P (Tn ≤ x)

n→∞→ P (Z ≤ x)

Denote as the ‘standardized’ version of Xi as Yi = Xi−µ
σ – we see that

Yi are still i.i.d. but with mean E(Yi) = 0 and V (Yi) = 1, and

Tn =

∑n
i=1 Yi√
n

Now, the central limit theorem is to show that the moment generating
function of Tn goes to that of a standard normal random variable
Z ∼ N (0, 1), whose mgf is exp( t

2

2 ).

mTn(t) = E(et·Tn)

=
(
E(e

t√
n
Yi)
)n

=

(
1 +

t√
n
EY +

1

2

t2

n
E(Y 2) +

1

6

t3

n3/2
E(Y 3) + · · ·

)n
=

(
1 + 0 +

1

2

t2

n
+

1

6

t3

n3/2
E(Y 3) + · · ·

)n
≈
(

1 +
t2

2

1

n

)2

→ e
t2

2

5. (15 pts) Let Xi ∼ Gamma(αi, β)2 for i = 1, . . . , n, and Xi ⊥⊥ Xj for
1 ≤ i < j ≤ n.

2β is the rate parameter.
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• Prove that the mgf of X1 is

mX1(t) =

(
1− t

β

)−α
for t < β.

• Prove that Sn = X1 + · · ·+Xn ∼ Gamma(
∑n

i=1 αi, β).

• Conclude that Sn = Z2
1 + · · · + Z2

n ∼ χ2(n) where Z1, . . . , Zn
iid∼

N (0, 1).
Hint: you can derive it directly or, better, remember the rela-
tionship of this distribution with the Gamma. . . .

Solution:

•

mX1(t) = E[etX ] =

∫ ∞
0

βα1

Γ(α1)
xα1−1e−(β−t)xdx

=
βα1

(β − t)α1

∫ ∞
0

(β − t)α1

Γ(α1)
xα1−1e−(β−t)xdx

hence for t < β we have

=
βα1

(β − t)α1
=

(
β

β − t

)α1

=

(
1− t

β

)−α
.

•

E
[
et

∑n
i=1Xi

]
=

n∏
i=1

(
1− t

β

)−αi

=

n∏
i=1

(
1− t

β

)−αi

=

(
1− t

β

)−∑n
i=1 αi

.

• Remember that a Z ∼ χ2(n) is equivalent to Z ∼ Gamma(n/2, 1/2).
Therefore, plugging these values into the mgf for the Gamma dis-
tribution, we obtain

(1− 2t)−
n
2 .

for t < 1/2.

6. (20 pts) Now we’ll do something useful for the next time you go to
the casino. There are two slot machines: one is giving the prize $1
with probability p1, while the second machine is giving the prize $1
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with probability p2. To make the problem interesting assume that
1 > p1 > 0.5 > p2 > 0. You want to become rich, so you want to
choose machine (1)! Of course you do not observe the p’s (the true
probabilities), so you start playing on both machines the same amount
of times.The most naive strategy would be to choose the machine with
the highest mean, but . . . How likely is it that you’ll make the right
choice?
Let’s work it out. Let Xi ∈ {0, 1} be the i-th results of machine 1, and
Yi ∈ {0, 1} the i-th result of machine 2. Assume the machines to be
independent. Compute the quantities for p1 = 0.6, p2 = 0.4.

• You play only once. In case of Y1 = X1 = 1 or X1 = Y1 = 0 you
choose the machine randomly. How likely is it that you’ll pick
the right machine? Hint: compute P (X1 > Y1).

• Let’s just consider the normal approximation to make everything
easier. What is P (X̄n > Ȳn)? Compute it for n = 30, n = 200,
and for n = 106. How does this probability compare to n = 1?
For simplicity do not take into account the case of ties in the
latter.
Hint: remember the property of the normals.

• Now let’s see how “fast” this probability converges to 1. Find a
lower bound to P (X̄n > Ȳn) in terms of n.
Hint: Use the following facts:

– P (X ≥ a) ≤ b ⇐⇒ P (X < a) ≥ 1− b.

– P (Z > x) ≤ e−
x2

2 /(x
√

2π) for Z ∼ N (0, 1).

Solution:

•

P (X1 > Y1) = P (X1 − Y − 1 > 0) = pX,Y (1, 0) = pX(1)pY (0) = p1(1− p2)

and
P (X1 = Y1) = p1p2 + (1− p1)(1− p2).

Therefore I will choose the correct machine with probability

p1(1− p2) +
p1p2 + (1− p1)(1− p2)

2
= 0.6.
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• Remember that X̄n−Ȳn
d→ N

(
p1 − p2,

1
n(p1(1− p1) + p2(1− p2)

)
by CLT and properties of the normal distribution.

P (X̄n > Ȳn) = P (X̄n − Ȳn > 0)

= P

(
√
n

X̄n − Ȳn − p1 + p2√
p1(1− p1) + p2(1− p2)

>
√
n

p2 − p1√
p1(1− p1) + p2(1− p2)

)

= 1− φ

(
√
n

p2 − p1√
p1(1− p1) + p2(1− p2)

)

For n = 30 we obtain 0.9430769, for n = 200 we have 0.9999777,
and for n = 106 we obtain 1!

• As in the previous exercise, we have

P
(
X̄n > Ȳn

)
= φ

(
√
n

p1 − p2√
p1(1− p1) + p2(1− p2)

)

where we use the symmetricity around 0 of the standard normal.
Now, let’s recall the hint

P (X ≥ a) ≤ b ⇐⇒ P (X < a) ≥ 1− b.

It’s easy to notice that with this hint we can lower bound the
formula above using the other hint:

φ

(
√
n

p1 − p2√
p1(1− p1) + p2(1− p2)

)
≥ 1−

1− exp
{
−1

2x
2
}

x
√

2π

where

x =
√
n

p1 − p2√
p1(1− p1) + p2(1− p2)

.

Call

a :=
p1 − p2√

p1(1− p1) + p2(1− p2)

and now we can rewrite the results as

φ(
√
na) ≥ 1−

1− exp
{
−a2

2 n
}

√
na
√

2π
.

7. (10 pts) Prove/disprove the following statements:
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(a) Let X ∼ N (0, 1). Is X/c where c ∈ R normally distributed?
What about cX?

(b) Let X1, X2 ∼ Uniform(0, 1). Can you compute P (X1 +X2 ≥ 1)?
Can you upper/lower bound it?

(c) Xn ∼ N (0, σ2
n) where σ2

n is 1 if n is odd, and 2 o/w. Does Xn

convergence in distribution to some distribution P?

Solution:

(a) Yes.

(b) You can only lower/upper bound it because they might not be
independent.

(c) No.
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