
Homework 9 (due Monday, June 24th at 11:59pm)

1. (5 pts) I forgot to add this problem in one of the early problem sets, so
here we go. It’s one of the most famous paradoxes in Statistics. You
are at the casino, and you play the following game: a coin is tossed
(H vs T) repeatedly until head appears (the game stops), and at every
toss the amount you win is doubled. That is, for instance,

• sequence is (H) - you win nothing

• sequence is (T,T,H) - you win 2+2· 2=2+4=6

• sequence is (T,T,T,T,T,T,T,T,H) -
you win 2+4+8+16+64+128+236+472=510

What’s the maximum price that you would pay to enter this game?
Hint: The expected value of the winning might be useful.

Solution:
This is called the St. Petersburg paradox. Let X be the r.v. repre-
senting the winning. Then

E[X] = 2
1

2
+ 4

22

+

8

23
+ · · · = 1 + 1 + 1 + · · · =∞.

Therefore you should be willing to pay any finite price in order to play
since you would always gain in expectation. However, you probably
would have payed no more than 20 dollars for this game. . . until you
computed the expected value.

2. (5 pts) We have seen in class that for n ∈ Z+, we have

n! =

∫ ∞
0

e−xxndx.

Prove it.
Hint: it’s just integration by parts.

Solution:
Integrating by parts we have∫ ∞

0
e−xxndx = −e−xxn|∞0 + n

∫ ∞
0

e−xxn−1dx

= · · · = n(n− 1) . . . 2 · 1
∫ ∞
0

e−xdx = n!
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3. (5 pts) In class we have seen Taylor expansions. Let’s do some exercises
on this topic to get a better grasp of it.

• Prove that
1

e
= 1− 1

2!
+

1

3!
− 1

4!
+ . . .

• Show the following Maclaurin series1

1

1 + x
= 1− x+ x2 − x3 + x4 + . . .

• Show that the Taylor series of the natural logarithm around 1 is

log(x) = −1 + x− (x− 1)2

2
+

(x− 1)3

3
− . . .

Now show also that the Maclaurin series of the natural logarithm
is

log(1 + x) = x− x2

2
+
x3

3
− . . .

Solution:

• If we take a Taylor expansion of e−x around 0, and then choosing
x = −1,

1

e
=
∞∑
i=0

(−1)i

i!
= −1 +

1

2!
− 1

3!
+ . . . .

• Consider the Taylor expansion of f(x) = (1 + x)−1 around 0:

(1 + x)−1 = 1 + (−1)x+
2

2!
x2 +

−3 · 2
3!

x3 + · · · =
∞∑
i=0

(−1)ixi.

• Consider the Taylor expansion of log(x) around a,

log x = log a+
1

a
(x− a)− 1

a2
(x− a)2

2!
+

2

a3
(x− a)3

3!
+ . . .

and, taking a = 1 we obtain

log x = −1 + x− (x− 1)2

2
+

(x− 1)3

3
− . . .

1Notice that this name should ring a bell: we are taking a Taylor expansion around
a = 0!

2



Now, for the second part we need to take a Taylor expansion
around 0, that yields

log x = −1 + x− x2

2
+
x3

3
+ . . .

4. (10 pts) Prove the following statements.

• Using Taylor series, prove that for a continuous function f and
some random variable X, we have

V (f(X)) ≈ (f ′(E[X]))2V (X)

using a first-order approximation.2

• Let p̂ be the MLE estimator for p, the parameter ofX ∼ Binomial(n, p),
that is p̂ = X/n. Apply the result above using f(p) = p/(1 − p)
(the odds) and X = p̂. Compute it for p = 0.3 and n = 3.

• Moreover, using again a first-order approximation, prove that

E[f(X)] ≈ f(E[X])

and compute it plugging in the values indicated above.

The last two results should remind you of the Delta method!

Solution:

• Consider a first-order Taylor expansion of f around E[X],

V (f(X)) ≈ V (f(E[X]) + f ′(E[X])X)

= V (f(E[X])) + V (f ′(E[X])X) = (f ′(E[X]))2V (X).

• Now, we see that

f ′(p) =
1

(1− p)2

and therefore

V

(
p̂

1− p̂

)
≈ 1

(1− p)4
V (p̂) =

1

(1− p)4
p(1− p)

n
=

p

(1− p)3n
≈ 0.29.

2That is, we do not consider second-order terms.
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•

E[f(X)] ≈ E[f(E[X]) + f ′(E[X])(X − E[X])]

= f(E[X]) + f ′(E[X])(E[X]− E[X]) = f(E[X]).

Its value is 3/7.

5. (10 pts) Using the central limit theorem for Poisson random variables,
compute the value of

lim
n→∞

e−n
n∑
i=0

ni

i!
.

Solution:
If you denote X1, · · · , Xn each i.i.d. Poisson random variables with
parameter 1. Then, Sn is Poisson(n), and the expectation of Sn is
E(Sn) = n. The central limit theorem states that the sum of Poissons
should go to P (Sn ≤ n) → 1

2 . Lastly, notice that the quantity of
interest is exactly P (Sn ≤ n)!

6. (10 pts) Let {Xt}t≥0 be a Poisson process with parameter λ. For
0 < s < t, compute

P (Xs = 1|Xt = 1).

Solution:

P (Xs = 1|Xt = 1) =
P (Xs = Xt = 1)

P (Xt = 1)
=
s

t
.

7. (15 pts) Let X ∼ Poisson(λ), Y ∼ Poisson(µ), and X ⊥⊥ Y . Consider
Z = X + Y .

• Although we have already shown this in class, prove again that
X + Y ∼ Poisson(λ+ µ) using mgf’s.

• Compute the probability that X = 1|Z = 1.

• What’s the distribution of X|Z = z for z > 0?

Solution:

• This result has already been derived in class.
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•

P (X = 1|Z = 1) = P (X = 1, Y = 0|Z = 1)

=
P (X = 1, Y = 0)

P (Z = 1)
=
P (X = 1)P (Y = 0)

P (Z = 1)

=
λ

λ+ µ
.

• From the previous fact we can simply conclude that

X ∼ Binomial(z, λ/(λ+ µ)).

8. (15 pts) Let X ∼ Poisson(λ) and Y ∼ Binomial(X, p). Compute E[Y ].
To make it more real life, think about X being the number of people
in line, and Y being the number of people in line that are also tired.
Compute the expected number of people that are tired and in line for
p = 0.8 and λ = 10.
Hint: rewrite Y =

∑X
i=1 Zi =

∑∞
i=1 Zi1(i ≤ X) where Zi ∼ Bernoulli(p).

Moreover, remember that E[X] =
∑∞

i=1 P (X ≥ i).

Solution:

E[Y ] = E[

∞∑
i=1

Zi1(i ≤ X)] =

∞∑
i=1

E[Zi1(i ≤ X)]

=

∞∑
i=1

E[Zi]E[1(i ≤ X)] = p

∞∑
i=1

P (X ≥ i) = pλ.

Therefore we have E[Y ] = 8.

9. (10 pts) Let {Xt}t≥0 be a Poisson process with parameter λ.

• Let T1, T2, . . . be the arrivals in the time window [0, T ]. Prove

that E[XTT −
∑XT

i=1 Ti] = T 2

2 λ. In a real life example, a train
leaves at time T , and this is the expected total time that all peo-
ple, arriving to the station according to a Poisson distribution,
will have to wait for. Compute it for T = 10 minutes and λ = 15.
Hint: use the law of total probability conditioning on XT . More-
over, remember that

E[

XT∑
i=1

T(i)|XT = n] = E[

XT∑
i=1

Ti|XT = n] =

n∑
i=1

E[Ti] = nT/2
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since
∑XT

i=1 T(i) =
∑XT

i=1 Ti, that is the sum of the first XT order
statistics is equal to the sum of the first XT random variables.

• Now, let S < T . Prove that

E

[
(XT −XS)T +XSS −

XT∑
i=1

Ti

]
=
λS2

2
+
λ(T − S)2

2
.

Again, this is asking the expected amount of time waited if two
different trains left at times S and T , with S < T .

• Now let T ∼ Uniform(0,M). Compute again

E[XTT −
XT∑
i=1

Ti].

Hint: integrate over T .

Solution:

•

E[T −
XT∑
i=1

Ti] =

∞∑
i=0

E[XTT −
XT∑
i=1

Ti|XT = i]P (XT = i)

=

∞∑
i=0

i
T

2
P (XT = i) =

∞∑
i=1

i
T

2
P (XT = i)

=
T

2
E[XT ] =

T 2

2
λ

For these values we obtain 50 · 15 = 750 minutes, such a waste of
time!

•

E

[
(XT −XS)T +XSS −

XT∑
i=1

Ti

]

= E

XT−S(T − S)−
XT−S∑
i=1

Ti

+ E

[
XSS −

XS∑
i=1

Ti

]

=
λ(T − S)2

2
+
λS2

2
.

thanks to the independent and stationary increments.
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•

E[XTT −
XT∑
i=1

Ti] =

∫ M

0

1

M
E[XTT −

XT∑
i=1

Ti|T = t]dt

=
λ

2M

∫ M

0
t2dt =

λ

2M

M3

3
=
λM2

6
.

10. (15 pts) Let T1 ∼ Exponential(λ1) and T2 ∼ Exponential(λ2). Com-
pute P (T1 < T2 + T ) where T > 0.
As a real life example, think about your laptop (hopefully T is very
large) vs your friend’s laptop’s lifetime and compute the probability
that yours breaks at most one year after his. Consider T = 1, λ1 =
2, λ2 = 1.
Hint: First, use the law of total probability with the event {T1 <
T} ∪ {T1 ≥ T}. In order to get the result, you will need to compute

P (T1 < T2) =

∫ ∞
0

P (T1 < T2|T2 = t2)fT2(t2)dt2

where fT2 is the pdf of T2.

Solution:

P (T1 < T2 + T ) = P (T1 < T ) + P (T1 ≥ T )P (T1 < T2 + T |T1 ≥ T )

= 1− e−λ1T + e−λ1TP (T1 − T < T2|T1 ≥ T )

= 1− e−λ1T + e−λ1TP (T1 < T2)

Now, let’s compute

P (T1 < T2) =

∫ ∞
0

P (T1 < T2|T2 = t2)fT2(t2)dt2

=

∫ ∞
0

(1− e−λ1t2)λ2e
−λ2t2dt2

= 1− λ2
∫ ∞
0

e−(λ1+λ2)t2dt2

= 1− λ2
λ1 + λ2

=
λ1

λ1 + λ2
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hence

P (T1 < T2 + T ) = 1 + e−λ1T
(

λ1
λ1 + λ2

− 1

)
.

For the values indicated, we obtain P (T1 < T2 + 1) ≈ 95%.
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