(The final) Quiz 6 (Wednesday, June 26th)

AndrewID:

Name:

Total: 120 points. Full score: 100 points.

- 1. Let $\mathbb{X} = \{X_t\}_{t\geq 0}$ and $\mathbb{Y} = \{Y_t\}_{t\geq 0}$ be two independent Poisson processes with rates λ and μ respectively. Let $Z_t = X_t + Y_t$. Compute $E[X_t|Z_t = n]$.
- 2. Let $X \sim \text{Bernoulli}(|Y 1/3|)$ where $Y = \mathbb{1}(Z \ge 0)$ and $Z \sim \mathcal{N}(0, 1)$. Write down the pmf for X.
- 3. Let T_n be the n-th arrival of a Poisson process with rate λ . Compute $P(T_n \leq t)$.
- 4. Let X be a Markov chain with state space $S = \{0, 1, 2, 3\}$. The transition probability matrix is

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 & 0\\ 0.1 & 0.4 & 0.5 & 0\\ 0 & 0 & 0.3 & 0.7\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

List the communicating class(es).

5. Let X be a Markov chain with state space $S = \{0, 1, 2\}$. The transition probability matrix is

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Does the MC admit a stationary distribution? If so, compute it.

6. Let X be a Markov chain with state space $S = \{0, 1, 2\}$. The transition probability matrix is

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Are the states periodic or aperiodic? What is $P^{(100)}$?