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Populations, Statistics and Random Processes

What is Statistics?
Quoting John Tukey,1

“Statistics is a science, not a branch of mathematics, but uses
mathematical models as an essential tool.”

However, on the Merriam-Webster dictionary2 we read that (Statstics is)

“a branch of mathematics dealing with the collection, analysis,
interpretation, and presentation of masses of numerical data.”

Although one may argue that Statistics is, or is not, a branch of mathemat-
ics, both quotes seem to suggest that statisticians need mathematical tools.
The second quote further suggests that such tools are used to collect and
analyse numerical data. What does this mean?

Broadly speaking, Statistics is about inference and estimation of features
or parameters for a ’population’ using observed data from that population.
What do we mean by ‘population’? We can think of a population as an entity
which encompasses all possible data that can be observed in an experiment.
This can be a tangible collection of objects or a more abstract entity.

Examples of populations are:

1https://www.stat.berkeley.edu/~brill/Papers/boas.pdf
2https://www.merriam-webster.com/dictionary/statistics
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• the deers in Frick Park;

• the runners of all the marathons in the USA;

• the subscribers of HBO;

• the number of burritos sold daily at Chipotle.

Most often, we perform an experiment because we are interested in learn-
ing about a particular feature or parameter of a population. Examples of
parameters for the above populations are respectively:

• the total number;

• the average time of the finishers;

• the proportion of subscribers that watched the final episode of GoT;

• the variability of the sales.

In order to learn such features we usually proceed as follows:

1. collect data

2. specify a statistical model for the unknown true population (e.g. spec-
ify a class of functions that approximate well the unobserved “true”
distribution of the preferences of the subscribers of HBO)

3. collect data X1, . . . , Xn, possibly by performing a particular experi-
ment (e.g. go to Frick park and count the deers. . . make sure that you
do not double count them)

4. compute a statistic, i.e. a function of the data (and of the data ex-
clusively!), to estimate the parameter of interest (e.g. compute the
average time of arrival of the runners)

5. further statistical analyses (in the next future).

How do we perform such such a statistical analysis?
Based on Tukey’s quote we use “mathematical models as an essential tools’.
Probability Theory provides the foundations of these tools. From a purely
mathematical point of view, Probability Theory is an application of Measure
Theory to real-world problems. At a more introductory and conceptual level,
Probability Theory is a set of mathematical tools that allows us to carry out
and analyze the process described above in a scientific way.
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A statistic is always a function of the data (it cannot be a function
of some parameter!). As an example, some frequently used statistics or
estimators are

• the sample mean X̄ = 1
n

∑n
i=1Xi

• the sample variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2.

In particular, they estimate the mean µ of the distribution of interest (which
is a measure of central tendency) and its variance σ2 (which is a measure of
variability/dispersion).

With respect to the examples above, we can use the sample mean to
estimate the mean weight µ of all the burritos sold in Chipotles by visiting
the store on Craig street every day for a month and asking the cashier.
We have now measured the sales X1, . . . , Xn, and we can compute X̄. We
expect that, as n gets larger, X̄ ≈ µ. If we are also interested in estimating
the variance of the sales of burritos σ2 or its standard deviation σ =

√
σ2,

we might compute the sample variance S2 or the sample standard deviation
S =

√
S2 (note that, as opposed to the sample variance, the sample standard

deviation has the same unit of measure of the data X1, . . . , Xn). Again, as
n gets larger, we expect that S2 ≈ σ2.

For the marathon’s example, we could scrape some data from the marathons
website. Unfortunately we are not expert in the topic, and we choose the
Boston marathon. The sample mean is 3 hours and 54 minutes, so we con-
clude the population mean will be the same. However, from a quick search
on Google we find out that some website claims that the population mean
should be 4 hours and 22 minutes. Then, who is correct? Likely, nor you nor
the website. However, who is more correct? A friend suggests that in order
to run the Boston marathon one needs to qualify for it; from this insight
we desume that these runners probably are faster than average. We have
incurred in a problem of sample bias: our sample does not reflect the entire
population; statistically speaking, we say that the distribution of our sample
does not correspond to the distribution of the population of interest.

How do we solve this problem? We could imagine that the runners
population is a gamma distribution with some unknown mean, and all the
individuals in our sample have times lower than the mean. Therefore we
have made a modeling assumption, that is a statement that you believe it is
true, in order to estimate the parameter of interest, the mean.

This class will provide you with the tools to approach these problems in
a statistical manner. Statistics is a result of the following process:
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TRUTH→MODELS→ STATISTICS

There are situations in which the quantity that we want to study evolves
with time (or with space, or with respect to some other dimension). For
example, suppose that you are interested in the number of people walking
into a store on a given day. We can model that quantity as a random
quantity Xt varying with respect to time t. Most often there exists some
kind of ‘dependence’ between the number of people in the store at time t
and the number of people in the store at time t′ (especially if |t−t′| is small).
There is a branch of Probability Theory that is devoted to study and model
this type of problems. We usually refer to the collection {Xt : t ∈ T } as
a ‘random process’ or as a ‘stochastic process’. The set T can represent a
time interval, a spatial region, or some more elaborate domain.

Another example of a random process is observing the location of rob-
beries occurring in a given city. (Question: what is T )?

Another typical example of a random process is the evolution of a stock
price in Wall Street as a (random) function of time. (Question: what is T )?

We will devote part of this course to study (at an introductory level)
some of the theory related to random processes.

We have mentioned probability several times, but what do we mean by
that? There are two major interpretations:

• objective probability: the long-run frequency of the occurrence of a
given event (e.g. seeing heads in a coin flip)

• subjective probability: a subjective belief in the rate of occurrence of
a given event.

Methods based on objective probability are usually called frequentist or
classical whereas those based on subjective probability are usually called
Bayesian as they are associated to the Bayesian paradigm, although Larry
argues that frequentist and Bayesian should be characterized in terms of
their goals, and not in terms of their methods.3 In this class, we focus on
frequentist methods (but we will discuss later in the course the basic idea
at the basis of Bayesian Statistics).

In Probability Theory, the notion of ‘event’ is usually described in terms
of a set (of outcomes). Therefore, before beginning our discussion of Prob-
ability Theory, it is worthwhile to review some basic facts about set theory.

3https://normaldeviate.wordpress.com/2012/11/17/what-is-bayesianfrequentist-inference/
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Set Theory

Throughout the course we will adopt the convention that Ω denotes the
universal set (the superset of all sets) and ∅ denotes the empty set (i.e. a
set that does not contain any element). Recall that a set A is a subset of
another set B (or A is contained in B) if for any element x of A we have
x ∈ A =⇒ x ∈ B. We denote the relation A is a subset of B by A ⊂ B
(similarly, A ⊃ B means A is a superset of B or A contains B). Clearly,
if A ⊂ B and B ⊂ A, then A = B. Let ∧ and ∨ stand for ‘and’ and
‘or’ respectively. Given three subsets A, B, C of Ω, recall the following set
properties:

• commutativity: A ∪B = B ∪A and A ∩B = B ∩A;

• associativity: A∪(B∪C) = (A∪B)∪C and A∩(B∩C) = (A∩B)∩C;

• distributive laws: A∩ (B ∪C) = (A∩B)∪ (A∩C) and A∪ (B ∩C) =
(A ∪B) ∩ (A ∪ C);

• De Morgan’s laws: (A ∪B)c = Ac ∩Bc and (∩ni=1Ai)
c = ∪ni=1A

c
i .

and the following basic set operations:

• union of sets: A ∪B = {x ∈ Ω : x ∈ A ∨ x ∈ B}

• intersection of sets: A ∩B = {x ∈ Ω : x ∈ A ∧ x ∈ B}

• complement of a set: Ac = {x ∈ Ω : x /∈ A}

• set difference A \B = {x ∈ Ω : x ∈ A ∧ x /∈ B}

• symmetric set difference A∆B = (A\B)∪ (B \A) = (A∪B)\ (A∩B).

These can be extended to the union and the intersection of any n > 0
sets:

• (∪ni=1Ai)
c = ∩ni=1A

c
i

• (∩ni=1Ai)
c = ∪ni=1A

c
i .

The same strategy for the proof can be used for the second statement.
We typically use Venn’s diagrams to represent logical relations between

sets.
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Notice that, for any set A ⊂ Ω, A ∪ Ac = Ω and A ∩ Ac = ∅. Two sets
A,B ⊂ Ω for which A∩B = ∅ are said to be disjoint or mutually exclusive.

A partition (disjoint union) of Ω is a collection of subsets A1, · · · , An
that satisfy

1. Ai ∩Aj = ∅, ∀i 6= j

2. ∪ni=1Ai = A1 ∪A2 ∪ · · · ∪An = Ω

We used before the word ‘experiment’ to describe the process of collect-
ing data or observations. An experiment is, broadly speaking, any process
by which an observation is made. This can be done actively, if you have
control on the apparatus that collects the data, or passively, if you only get
to see the data, but you have no control on the apparatus that collects them.
An experiment generates observations or outcomes. Consider the following
example: you toss a fair coin twice (your experiment). The possible out-
comes (simple events) of the experiment are HH, HT, TH, TT (H: heads,
T: tails). The collection of all possible outcomes of an experiment forms the
‘sample space’ of that experiment. In this case, the sample space is the set
Ω = {HH,HT, TH, TT}. Any subset of the sample space of an experiment
is called an event. For instance, the event ‘you observe at least one tails in
your experiment’ is the set A = {HT, TH, TT} ⊂ Ω.

Note: These are discrete events, i.e. they are a collection of sample
points from a discrete sample space. A discrete sample space Ω is one that
contains either a finite or countable number of distinct sample points. An
event in a discrete sample space is simply a collection of sample points –
any subset of Ω.

In this part of the course, just assume we deal with discrete events from
a discrete sample spaces. Later, we will deal with continuous sample spaces.

Exercises in class

1. A fair coin is tossed twice. You have decided to play a game whose
outcome is

• If the first flip is H, you win $1,000,

• If the first flip is T, you lose $1,000.

(a) Writing a particular outcome as the concatenation of single out-
comes such as H or T. What is the sample space Ω?
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(b) Write as A, a subset of Ω, the set corresponding to the event
that the first flip is H. What are elements in A? What is the
probability of A?

(c) Denote as B the same as above, of the event that the second toss
is T. What are the elements in B? What is the probability of B?

(d) What is the probability of the first is head and second being tail?

(e) Draw A, B, and Ω in a Venn diagram.

(f) What is your expected return?
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Lecture 2

Recommended readings: WMS 2.1→ 2.6

Unconditional Probability

Consider again the example from the previous lecture. We toss a fair coin
twice. The sample space for the experiment is Ω = {HH,HT, TH, TT}.

If we were to repeat the experiment over and over again, what
is the frequency of the occurrence of the sequence HT? What
about the other sequences? What about the frequency of {HT} ∪
{TT}?

Modern Probability Theory is built on a set of axioms4 formulated by the
Russian mathematician Andrey Kolmogorov in his masterpiece Foundations
of the Theory of Probability.
A probability measure P on Ω is a set function5 satisfying the following
axioms:

1. for any A ⊂ Ω, P (A) ∈ [0, 1];

2. (norming) P (Ω) = 1;

3. (countable additivity) for any countable collection of disjoint events
{Ai}∞i=1 ⊂ Ω, P (∪∞i=1Ai) =

∑∞
i=1 P (Ai).

From the second and third axiom, it follows that P (∅) = 0.

Now, what do these axioms imply about P (A ∪ B)? We can show that
P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. First notice that A = (A∩B)∪(A∩Bc), and these events are disjoint.
By the third axiom of probability we have

P (A) = P (A ∩B) + P (A ∩Bc)

P (B) = P (A ∩B) + P (Ac ∩B)
(1)

4An axiom is a statement believed to be true.
5A set function is a function whose domain is a collection of sets.
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Moreover, A ∪B = (A ∩Bc) ∪ (Ac ∩B) ∪ (A ∩B) and again these sets are
all disjoint. Putting all together we get

P (A ∪B) = P (A)− P (A ∩B) + P (B)− P (A ∩B) + P (A ∩B)

= P (A) + P (B)− P (A ∩B).
(2)

In case of A ∩B = ∅ we clearly obtain

P (A ∪B) = P (A) + P (B)− P (A ∩B)

= P (A) + P (B)− P (∅) = P (A) + P (B).
(3)

This can be extended to more than 2 events. For instance, givenA,B,C ⊂
Ω, we have

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)

− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)
(4)

and, in general, for A1, . . . , An ⊂ Ω we have the so called inclusion-exclusion
formula (note the alternating signs for the summands):

P (∪ni=1Ai) =
n∑

i=1

P (Ai)−
∑

1≤i<j≤n
P (Ai ∩Aj)

+
∑

1≤i<j<k≤n
P (Ai ∩Aj ∩Ak)− · · ·+ (−1)n−1P (A1 ∩ · · · ∩An).

(5)

Notice that in general we have the following union bound for anyA1, . . . , An ⊂
Ω:

P (∪ni=1Ai) ≤
n∑

i=1

P (Ai). (6)

For a given experiment with m possible outcomes, how can we compute
the probability of an event of interest? We can always do the following:

1. define the experiment and describe its simple events Ei, i ∈ {1, . . . ,m};

2. define reasonable probabilities on the simple events, P (Ei), i ∈ {1, . . . ,m};

3. define the event of interest A in terms of the simple events Ei;

4. compute P (A) =
∑

i:Ei∈A P (Ei).
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Here is an example (and we will describe it in terms of the above scheme).
There are 5 candidates for two identical job positions: 3 females and 2 males.
What is the probability that a completely random selection process will
appear discriminatory? (i.e. exactly 2 males or exactly 2 females are chosen
for these job positions) We can approach this problem in the following way.

1. we introduce 5 labels for each of the 5 candidates: M1, M2, F1, F2,
F3. The sample space is then

Ω ={M1M2,M1F1,M1F2,M1F3,M2M1,M2F1,M2F2,M2F3, F1M1, F1M2,

F1F2, F1F3, F2M1, F2M2, F2F1, F2F3, F3M1, F3M2, F3F1, F3F2}

2. because the selection process is completely random, each of the simple
events of the sample space is equally likely. Therefore the probability
of any simple event is just 1/|Ω|

3. the event of interest isA = {M1M2,M2M1, F1F2, F1F3, F2F1, F2F3, F3F1, F3F2}

4. P (A) = P (M1M2) + P (M2M1) + · · · + P (F3F2) = |A|/|Ω| = 8/20 =
2/5 = 0.4.

If the simple events are equally likely to occur, then the probability of a
composite event A is just P (A) = |A|/|Ω|.

Questions to ask when you define the sample space and the probabilities
on the simple events:

• is the sampling done with or without replacement?

• does the order of the labels matter?

• can we efficiently compute the size of the sample space, |Ω|?

This leads to our next topic, which will equip us with tools to conve-
niently calculate probability.

Tools for counting sample points

Basic techniques from combinatorial analysis come handy for this type of
questions when the simple events forming the sample space are equally likely
to occur. Let’s take a closer look to some relevant cases.
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Suppose you have a group of m elements a1, . . . , am and another group
of n elements b1, . . . bn. You can form mn pairs containing one element from
each group. That is, if A = {a1, . . . , am} and B = {b1, . . . , bn}, then we are
interested in the elements of the cartesian product A×B. Of course you can
easily extend this reasoning to more than just two groups. This is a useful
fact when we are sampling with replacement and the order matters.

Consider the following example. You toss a six-sided die twice. You have
m = 6 simple outcomes on the first roll and n = 6 possible outcomes in the
second roll. The sample space is

Ω = {(1, 1), (1, 2), (1, 3), . . . , (6, 5), (6, 6)}.
Therefore the size of Ω is |Ω| = mn = 62 = 36.
Is the experiment performed with replacement? Yes, if the first roll is a 2,
nothing precludes the fact that the second roll is a 2 again. Does the order
matter? Yes, the pair (2,5) corresponding to a 2 on the first roll and a 5
on the second roll is not equal to the pair (5,2) corresponding to a 5 on the
first roll and a 2 on the second roll.

Sampling without replacement when order matters
An ordered arrangement of r distinct elements is called a permutation. The
number of ways of ordering n distinct elements taken r at a time is denoted
Pnr where

Pnr = n(n− 1)(n− 2) . . . (n− r + 1) =
n!

(n− r)! . (7)

Consider the following example. There are 30 members in a student
organization and they need to choose a president, a vice-president, and a
treasurer. In how many ways can this be done? The size of the n distinct
elements (persons) is n = 30, the number of persons to be appointed is
r = 3. The sampling is done without replacement (a president is chosen
out of 30 people, then among the 29 people left a vice-president is cho-
sen, and finally among the 28 people left a treasurer is chosen). Does the
order matter? Yes, the president is elected first, then the vice-president,
and finally the treasurer (think about ‘ranking’ the 30 candidates). The
number of ways in which the three positions can be assigned is therefore
P 30

3 = 30!/(30− 3)! = 30 ∗ 29 ∗ 28 = 24360.

Sampling without replacement when order does not matter
The number of combinations of n elements taken r at a time corresponds to
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the number of subsets of size r that can be formed from the n objects. This
is denoted Cnr where

Cnr =

(
n

r

)
=
Pnr
r!

=
n!

(n− r)!r! . (8)

How did we get such a formula? To get some intuition, first think about
all the ordered sets that contain the same r objects: this number is given by
Pnr . Fixed this r elements, let the objects be x1, . . . , xr. Then we will have
r! different possible permutations of these r objects. Why? It is clear that
x1 will appear in any of r positions in the set, hence we have r choices. For
any choice, x2 will appear in any of the r − 1 positions left. And so on . . . .
This is exactly equal to the permutation of r objects. Therefore we divide
Pnr by r! to obtain the number of combinations.

Here is an example. How many different subsets of 3 people can become
officers of the organization formed by 30 people, if chosen randomly? Or-
der doesn’t matter here (we are not interested in the exact appointments
for a given candidate). The answer is therefore C30

3 = 30!/(27! ∗ 3!) =
30 ∗ 29 ∗ 28/6 = 4060.

The binomial coefficient
(
n
r

)
can be extended to the multinomial case

in a straightforward way. Suppose that we want to partition n distinct
elements in k distinct groups of size n1, . . . , nk in such a way that each of
the n elements appears in exactly one of the groups. This can be done in

(
n

n1 . . . nk

)
=

n!

n1!n2! . . . nk!
(9)

possible ways.

The connection to the combinations seen above is more clear through
the following decomposition:

(
n

n1 . . . nk

)
= Cnn1

Cn−n1
n2

Cn−n1−n2
n3

. . . C
n−

∑k−1
i=1 ni

nk .

Exercises in class:

1. The final exam of 36-217 has 5 multiple choice questions. Questions
1 to 3 and question 5 each have 3 possible choices. Questions 4 has 4
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possible choices. Suppose that you haven’t studed at all for the exam
and your answers to the final exam are given completely at random.
What is the probability that you will get a full score at the exam?

2. You have a string of 10 letters. How many substrings of length 7 can
you form based on the original string with replacement? And what
about without replacement?

3. Google is looking to hire 3 software engineers and asked CMU for po-
tential candidates. CMU advised that Google hires 3 students from the
summer 36-217 class. Because the positions must be filled as quickly
as possible, Google decided to skip the interview process and hire 3
of you completely at random. What is the probability that *you* will
become a data scientist at Google?

4. In a game of 5 card poker (played out of a standard 52-card deck ? 13
denominations, 4 suits):

• What is the probability of getting “4 of a kind” (4 cards of one
denomination, 1 card of a different denomination)?

• What is the probability of getting a “full house” (3 cards of one
denomination, 2 cards of another denomination)?
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Lecture 3

Recommended readings: WMS, sections 2.7 → 2.13

Conditional Probability

The probability of an event A may vary as a function of the occurrence of
other events. Then, it becomes interesting to compute conditional probabil-
ities, e.g. the probability that the event A occurs given the knowledge that
another event B occurred.

As an example of unconditional probability, think about the eventA =‘my
final grade for the 36-217 summer class is higher than 90/100’ (this event
is not conditional on the occurrence of another event) and its probability
P (A). As an example of conditional probability, consider now the event B =
‘my midterm grade for the 36-217 class was higher than 80/100’: how are
P (A) and P (A given that B occurred) related? Intuitively, there is quite a
lot of uncertainty: grade of the final exam, homeworks, etc.... but we might
expect that P (A) < P (A given that B occurred)!

The conditional probability of an event A given another event B is usu-
ally denoted P (A|B).

By definition, the conditional probability of the event A given the event
B is

P (A|B) =
P (A ∩B)

P (B)
. (10)

Observe that the quantity P (A|B) is well-defined only if P (B) > 0.

Consider the following table:

B Bc

A 0.3 0.1
Ac 0.4 0.2

The unconditional probabilities of the events A and B are respectively
P (A) = 0.3 + 0.1 = 0.4 and P (B) = 0.3 + 0.4 = 0.7. The conditional prob-
ability of the event A given the event B is P (A|B) = P (A ∩ B)/P (B) =
0.3/0.7 = 3/7 while the probability of the event B given the event A is
P (B|A) = P (B ∩ A)/P (A) = 0.3/0.4 = 3/4. The conditional probability
of the event A given that Bc occurs is P (A|Bc) = P (A ∩ Bc)/P (Bc) =
0.1/0.3 = 1/3.
Does the probability of A vary as a function of the occurrence of the event B?
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The conditional probability P (·|B) with respect to an event B with P (B) >
0 is a proper probability measure, therefore the three axioms of probability
that we discussed in Lecture hold for P (·|B) as well. When it comes to stan-
dard computations, P (·|B) has the same properties as P (·): for instance,
for disjoint events A1, A2 ⊂ Ω we have P (A1∪A2|B) = P (A1|B)+P (A2|B).

Exercise in class
There is 20% chance that you go to Craig Street to have lunch at Sushi Fuku,
a 30% chance that you get a coffee at Starbucks, and a 10% chance that
you both have lunch at Sushi Fuku and get a coffee at Starbucks. What’s
the probability that you get a coffee at Starbucks if you have been to Sushi
Fuku? What about the probability that you get lunch at Sushi Fuku given
that you have been to Starbucks?

Independence

The event A ⊂ Ω is said to be independent of the event B ⊂ Ω if P (A ∩
B) = P (A)P (B). This means that the occurrence of the event B does not
alter the chance that the event A happens. In fact, assuming that P (B) >
0, we easily see that this is equivalent to P (A|B) = P (A ∩ B)/P (B) =
P (A)P (B)/P (B) = P (A).

Furthermore, assuming that also P (A) > 0, we have that P (A|B) =
P (A) is equivalent to P (B|A) = P (B) (independence is a symmetric rela-
tion!).

Exercise in class
Let A,B ⊂ Ω and P (B) > 0.

• What is P (A|Ω)?

• What is P (A|A)?

• Let B ⊂ A. What is P (A|B)?

• Let A ∩B = ∅. What is P (A|B)?

Notice that from the definition of conditional probability, we have the
following:

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A). (11)

This can be generalized to more than two events. For instance, for three
events A,B,C ⊂ Ω, we have

P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B) (12)
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and for n events A1, . . . , An

P (A1∩· · ·∩An) = P (A1)P (A2|A1)P (A3|A1∩A2) . . . P (An|A1∩· · ·∩An−1).
(13)

Warning: Independence and Disjoint are not the same.
Two events being disjoint simply means that they do not share any jointly
occurring elements. For instance, in a single coin flip example, A = {H}
and B = {T} are disjoint events, but A gives perfect knowledge of B, as we
know that P (A|B) = 0 and P (A|BC) = 1, so that P (A|B) 6= P (A) = 1/2.
Exercise in class
Consider the following events and the corresponding table of probabilities:

B Bc

A 0 0.2
Ac 0.4 0.4

Are the events A and B disjoint?
Are the events A and B independent?

Exercise in class
Consider the following events and the corresponding table of probabilities:

B Bc

A 1/4 1/12
Ac 1/2 1/6

Are the events A and B disjoint?
Are the events A and B independent?

Law of Total Probability and Bayes’ Rule

Assume that {Bi}∞i=1 is a partition of Ω, i.e. for any i 6= j we have Bi∩Bj = ∅
and ∪∞i=1Bi = Ω. Assume also that P (Bi) > 0 ∀i. Then, for any A ⊂ Ω, we
have the so-called law of total probability

P (A) =

∞∑

i=1

P (A|Bi)P (Bi). (14)

Indeed, A = ∪∞i=1(A∩Bi) when ∪ni=1Bi = Ω. But this time the sets (A∩Bi)
are also disjoint since {Bi}∞i=1 is a partition of Ω. Furthermore, by equation
(11) we have P (A∩Bi) = P (A|Bi)P (Bi). Thus, P (A) =

∑∞
i=1 P (A∩Bi) =
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∑∞
i=1 P (A|Bi)P (Bi).

We can now use the law of total probability to derive the so-called Bayes’
rule. We have

P (Bi|A) =
P (Bi ∩A)

P (A)
=

P (A|Bi)P (Bi)∑∞
i=1 P (A|Bi)P (Bi)

. (15)

For two events A,B this reduces to

P (B|A) =
P (A|B)P (B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
(16)

Exercise in class
You are diagnosed with a disease that has two types, A and B. In the
population, the probability of having type A is 10% and the probability of
having type B is 90%. You undergo a test that is 80% accurate, i.e. if you
have type A disease, the test will diagnose type A with probability 80%
and type B with probability 20% (and vice versa). The test indicates that
you have type A. What is the probability that you really have the type A
disease?

Let A =‘you have type A’, B=‘you have type B’, TA =‘the test diagnoses
type A’, and TB =‘the test diagnoses type B’. We know that P (A) = 0.1
and P (B) = 0.9. The test is 80% accurate, meaning that

P (TA|A) = P (TB|B) = 0.8

P (TB|A) = P (TA|B) = 0.2

We want to compute P (A|TA). We have

P (A|TA) =
P (A ∩ TA)

P (TA)
=

P (TA|A)P (A)

P (TA|A)P (A) + P (TA|B)P (B)

=
0.8 ∗ 0.1

0.8 ∗ 0.1 + 0.2 ∗ 0.9
=

8

26
=

4

13
.

Conditional Independence

We are now equipped to talk about another ‘parallel’ concept to indepen-
dence. Let C be an event with P (C) > 0. We say that the events A and B
are conditional independent of C if

P (A ∩B|C) = P (A|C)P (B|C).
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This implies that
P (A|B ∩ C) = P (A|C)

To see this notice that conditional independence of A,B given C implies that

P (A|C)P (B|C) = P (A ∩B|C)

=
P (A ∩B ∩ C)

P (C)

=
P (C)P (B|C)P (A|B ∩ C)

P (C))

= P (B|C)P (A|B ∩ C).

Conditional independence does not imply nor is it implied by independence.

Independence does not imply conditional independence Toss two
coins. Let H1 be the event that the first toss is H and H2 the event that
the second toss is H. Let D the even that the two tosses are different.
H1 and H2 are clearly independent but P (H1|D) = P (H2|D) = 1/2 and
P (H1 ∩H2|D) = 0.

Conditional independence does not imply independence We have
two coins, a blue one and a red one. For the blue coin the probability of H
is 0.99 and for the red coin it is 0.01. A coin is chosen at random and then
tossed twice. Let B the event that the blue coin is selected, R the event
that the red coin is selected. Let H1 and H2 the events that the first and
second toss is H. By the law of total probability

P (H1) = P (H1|B)P (B) + P (H1|R)P (R) = 1/2.

Similarly P (H2) = 1/2. But, using again the law of total probability,

P (H1∩H2) = P (H1∩H2|B)P (B)+P (H1∩H2|R)P (R) = 1/2·0.992+1/2·0.012 ≈ 1/2

which is different than P (H1)P (H2) = 1/4.
Pairwise independence does not imply independence.
Consider A1, . . . , An ⊂ Ω. If for every 1 ≤ i < j ≤ n we have P (Ai ∩
Aj) = P (Ai)P (Aj), the events are said to be pairwise independent. Mutual
independence, instead, is defined as P (∩ni=1Ai) =

∏n
i=1 P (Ai). Notice that

mutual independence implies pairwise independence, but the converse is not
true.
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Lecture 4

Recommended readings: WMS, sections 3.1, 3.2, 4.1 → 4.3

Random Variables and Probability Distributions

Let’s start with an example. Suppose that you flip a fair coin three times.
The sample space for this experiment is

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

Since the coin is fair, we have that

P ({HHH}) = P ({HHT}) = · · · = P ({TTT}) =
1

|Ω| =
1

8
.

Suppose that we are interested in a particular quantity associated to the
experiment, say the number of tails that we observe. This is of course
a random quantity. In particular, we can conveniently define a function
X : Ω→ R that counts the number of tails. Precisely,

X(HHH) = 0

X(HHT ) = 1

X(HTH) = 1

X(HTT ) = 2

...

X(TTT ) = 3.

We say that P induces through X a probability distribution on R. In par-
ticular, we can easily see that the probability distribution of the random
variable X is

P (X = 0) = P ({HHH}) = 1/8

P (X = 1) = P ({HHT,HTH, THH}) = 3/8

P (X = 2) = P ({HTT, THT, TTH}) = 3/8

P (X = 3) = P ({TTT}) = 1/8

P (X = any other number) = 0.

Remark: although the probability measures are denoted by P on both
sides, they do refer to probability measure on different spaces. The measure
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on the LHS is on R, while the one on the RHS is on Ω. This is more clear if
we rewrite it, with some abuse of notation, as PR(X = 0) = PΩ(X−1(X =
0)) = PΩ({HHH}) = 1/8. Ω is typically referred to as the underlying prob-
ability space. Therefore PR is the probability distribution induced by PΩ

through X.

Why is X said to be random if it is just a function? First, the outcome
of the experiment is random, so the value that the function X takes is
also random. Second, we could modify the underlying probability space Ω
without modifying X; therefore “random” aims at highlighting the fact that
we are not truly interested in Ω, but in the distribution of X.

Formal Definition of a random variable

Suppose we have a sample space Ω. A random variable X is a function
from Ω into the real line. In other words, X : Ω→ R or

ω ∈ Ω 7→ X(ω) ∈ R

Random variables will be denoted with capital letters, such as X. This
is a consistent, standard notation for a random variable.

Lecture VII—7 February 2012 36-217 Liz Kulka

Readings:

Midterm 1 in 10 days, no notes and no calculators permitted.
There will be a handout on BB with equations that we do not need to memorize.

The format will be identical to the practice exam and the di�culty level should be similar.

1 Random Variables

Suppose we have a sample space ⌦. A random variable X is a function from ⌦ into the real line.
In other words, X : ⌦ ! R or

! 2 ⌦ 7! X(!) 2 R

X is a consistent, standard notation for a random variable.

1.1 Examples

1. Flip 3 coins.
⌦ = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let X(!) =# H’s in !.

X(!) =

( 0 if ! 2 {TTT}
1 if ! 2 {HTT, THT, TTH}
2 if ! 2 {HHT, HTH, THH}
3 if ! 2 {HHH}

2. Flip a coin until we see H.

Let X(!) =# T’s before first H.

⌦ = {H, TH, TTH, TTTH, . . .}

X(!) =

( 0
1
2
...

3. We transmit a signal and record the time it takes to complete transmission

⌦ = {x 2 R, x > 0}

Let X(!) = !.

⌦

R

X

1Why we care about random variables? After all, based on the example,
it seems that we still have to clearly define and specify the sample space in
order to determine P (X = x) for x ∈ R. Actually, it turns out when we
model a random quantity of interest (such as the number of tails in the coin
tossing example) most of the times one assumes (or knows) a distribution to
use. It’s just easier and more natural. Of course, this assumption must to be
reasonable and needs to be rigorously checked by the modeller. By modelling
the randomness of a phenomenon as a random variable whose distribution is
known, we can bypass the trouble of defining/specifying a sample space. In
the example above, if we simply assume that X has a Binomial distribution,
then the sample space is automatically the discrete space of 3-length binary
outcomes (HHH, HHT, etc.), and the probability of events of interest (e.g.

20



X=1, which corresponds to one head out of three throws, which is the subset
of the sample space {HTT, THT, TTH}) is precisely calculable.

To summarise, one should specify Ω and a probability measure on this
space, map Ω to R through X, and analyse the induced probability measure
on R. However, one can skip the first step, that is leave Ω undefined, and
just specify the induced probability measure on R, which is the object of
interest. This is enough to guarantee the existence of some Ω for which this
probability measure exists.
Exercise in class
Let X and Y be random variables with the following distributions:

P (X = x) =





0.4 if x = 0

0.6 if x = 1

0 if x /∈ {0, 1}

and

P (Y = y) =





0.7 if y = −1

0.3 if y = 1

0 if y /∈ {0, 1}
Suppose that for any x, y ∈ R the events {X = x} and {Y = y} are in-
dependent. What is the probability distribution of the random variable
Z = X + Y ? We have

Z =





−1 if {X = 0} ∩ {Y = −1} occurs

0 if {X = 1} ∩ {Y = −1} occurs

1 if {X = 0} ∩ {Y = 1} occurs

2 if {X = 1} ∩ {Y = 1} occurs.

Thus,

P (Z = z) =





0.4 ∗ 0.7 if z = −1

0.6 ∗ 0.7 if z = 0

0.4 ∗ 0.3 if z = 1

0.6 ∗ 0.3 if z = 2

0 if z /∈ {−1, 0, 1, 2}

=





0.28 if z = −1

0.42 if z = 0

0.12 if z = 1

0.18 if z = 2

0 if z /∈ {−1, 0, 1, 2}.

At this point it is worthwhile making an important distinction between
two types of random variables, namely discrete random variables and con-
tinuous random variables.
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We say that a random variable is discrete if the set of values that it can
take is at most countable. On the other hand, a random variable taking
values in an uncountably infinite set is called continuous.

Question
Consider the following:

• you draw a circle on a piece of paper and one diameter of the circle;
at the center of the circle, you keep your pencil standing orthogonal
to the plane where the circle lies. At some point you let go the pencil.
X is the random variable corresponding to the angle that the pencil
forms with the diameter of the circle that you drew after the pencil
fell on the piece of paper.

• you roll a die. Y is the random variable corresponding to the number
of rolls needed until you observe tail for the first time.

What are the possible values that X and Y can take? Are X and Y discrete
or continuous random variables?

Depending on whether a given random variable X is discrete or continu-
ous, we use two special types of functions in order to describe its distribution.

• if X is discrete, let’s define its support as the set supp(X) = {x ∈
R : P (X = x) > 0} (if X is discrete, supp(X) is either a finite or
countable set). We can describe the probability distribution of X in
terms of its probability mass function (p.m.f.), i.e. the function

p(x) = P (X = x) (17)

mapping R into [0, 1]. The function p satisfies the following properties:

1. p(x) ∈ [0, 1] ∀x ∈ R
2.
∑

x∈supp(X) p(x) = 1.

• if X is continuous, we can describe the probability distribution of X
by means of the probability density function (p.d.f.) f : R → R+.
Define in this case supp(X) = {x ∈ R : f(x) > 0}. The function f
satisfies the following properties:

1. f(x) ≥ 0 ∀x ∈ R
2.
∫
R f(x) dx =

∫
supp(X) f(x) dx = 1.
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We use f to compute the probability of events of the type {X ∈ (a, b]}
for a < b. In particular, for a < b, we have

P (X ∈ (a, b]) =

∫ b

a
f(x) dx (18)

Notice that this implies that, for any x ∈ R, P (X = x) = 0 if X
is a continuous random variable! Also, if X is a continuous random
variable, it is clear from above that

P (X ∈ (a, b]) = P (X ∈ [a, b]) = P (X ∈ [a, b)) = P (X ∈ (a, b)). (19)

In general, for any set A ⊂ R, we have

P (X ∈ A) =

∫

A
f(x) dx.

Exercise in class
A group of 4 components is known to contain 2 defectives. An inspector ran-
domly tests the components one at a time until the two defectives are found.
Let X denote the number of tests on which the second defective is found.
What is the p.m.f. of X? What is the support of X? Graph the p.m.f. of X.

Let D stand for defective and N stand for non-defective. The sample
space for this experiment is Ω = {DD,NDD,DND,DNND,NDND,NNDD}.
The simple events in Ω are equally likely because the inspector samples the
components completely at random. Thus, the probability of each simple
event in Ω is just 1/|Ω| = 1/6. We have

P (X = 2) = P ({DD}) = 1/6

P (X = 3) = P ({NDD,DND}) = 2/6 = 1/3

P (X = 4) = P ({DNND,NDND,NNDD}) = 3/6 = 1/2

P (X = any other number) = 0.

Thus, the p.m.f. of X is

p(x) =





1/6 if x = 2

1/3 if x = 3

1/2 if x = 4

0 if x /∈ {2, 3, 4}
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and supp(X) = {2, 3, 4}.

Exercise in class
Consider the following p.d.f. for the random variable X:

f(x) = e−x1[0,∞)(x) =

{
e−x if x ≥ 0

0 if x < 0.

What is the support of X? Compute P (2 < X < 3). Graph the p.d.f. of X.
The support of X is clearly the set [0,∞). We have

P (2 < X < 3) = P (X ∈ (2, 3)) =

∫ 3

2
f(x) dx = −e−x

∣∣3
2

= e−2 − e−3.

Another way to describe the distribution of a random variable is by
means of its cumulative distribution function (c.d.f). Again we will separate
the discrete case and the continuous case.

• If X is a discrete random variable, its c.d.f is defined as the function

F (x) =
∑

y≤x
y∈supp(X)

p(y).

Notice that for a discrete random variable, F is not a continuous func-
tion.

• If X is a continuous random variable, its c.d.f is defined as the function

F (x) =

∫ x

−∞
f(y) dy.

Notice that for a continuous random variable, F is a continuous func-
tion.

In both cases, the c.d.f. of X satisfies the following properties:

1. limx→−∞ F (x) = 0

2. limx→+∞ F (x) = 1

3. x ≤ y =⇒ F (x) ≤ F (y)

4. F is a right-continuous function, i.e. for any x ∈ R we have limy→x+ F (y) =
F (x).
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Exercise in class
Compute the c.d.f. of the random variable X in the two examples above
and draw its graph.

For the example in the discrete case, we have

F (x) =





0 if x < 2

1/6 if 2 ≤ x < 3

1/6 + 1/3 = 1/2 if 3 ≤ x < 4

1/2 + 1/2 = 1 if x ≥ 4.

For the example in the continuous case, we have

F (x) =

{
0 if x < 0

0 +
∫ x

0 e
−y dy if x ≥ 0

=

{
0 if x < 0

−e−y|x0 if x ≥ 0
=

{
0 if x < 0

1− e−x if x ≥ 0.

What is the relationship between the c.d.f. of a random variable and its
p.m.f./p.d.f.?

• For a discrete random variable X, let x(i) denote the i-th largest ele-
ment in supp(X). Then,

p(x(i)) =

{
F (x(i))− F (x(i−1)) if i ≥ 2

F (x(i)) if i = 1

• For a continuous random variable X,

f(x) =
d

dy
F (y)

∣∣∣∣
y=x

for any x at which F is differentiable.

Furthermore, notice that for a continuous random variable X with c.d.f.
F and for a < b one has

P (a < X ≤ b) = P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X < b)

=

∫ b

a
f(x) dx =

∫ b

−∞
f(x) dx−

∫ a

−∞
f(x) dx = F (b)− F (a).
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This is easy. However, for a discrete random variable one has to be careful
with the bounds. Using the same notation as before, for i < j one has

P (x(i) < X ≤ x(j)) = F (x(j))− F (x(i))

P (x(i) ≤ X ≤ x(j)) = F (x(j))− F (x(i)) + p(x(i))

P (x(i) ≤ X < x(j)) = F (x(j−1))− F (x(i)) + p(x(i))

P (x(i) < X < x(j)) = F (x(j−1))− F (x(i)).

Suppose that the c.d.f. F of a continuous random variable X is strictly
increasing. Then F is invertible, meaning that there exists a function F−1 :
(0, 1) → R ∪ {−∞,+∞} such that for any x ∈ R we have F−1(F (x)) = x.
Then, for any α ∈ (0, 1) we can define the α-quantile of X as the number

xα = F−1(α) (20)

with the property that P (X ≤ xα) = α. This can be extended to c.d.f. that
are not strictly increasing and to p.m.f.’s, but for this class we will not use
that extension.

Exercise in class
Consider again a random variable X with p.d.f.

f(x) = e−x1[0,∞)(x) =

{
e−x if x ≥ 0

0 if x < 0.

Compute the α-quantile of X.

We know from above that

F (x) =

{
0 if x < 0

1− e−x if x ≥ 0.

For α ∈ (0, 1), set α = F (xα) = 1− e−xα . We then have that the α-quantile
is

xα = − log(1− α).
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Lecture 5

Recommended readings: WMS, sections 3.3, 4.3

Expectation and Variance

The expectation (or expected value or mean) is an important operator asso-
ciated to a probability distribution. Given a random variable X with p.m.f.
p (if X is discrete) or p.d.f. f (if X is continuous), its expectation E(X) is
defined as

• E(X) =
∑

x∈supp(X) xp(x), if X is discrete

• E(X) =
∫
R xf(x) dx =

∫
x∈supp(X) xf(x) dx, if X is continuous.

Roughly speaking, E(X) is the ‘center’ of the distribution of X.

Exercise in class
Consider the random variable X and its p.m.f.

p(x) =





0.2 if x = 0

0.3 if x = 1

0.1 if x = 2

0.4 if x = 3

0 if x /∈ {0, 1, 2, 3}.

What is E(X)?

By definition we have

E(X) =
∑

x∈supp(X)

xp(x) = 0∗0.2+1∗0.3+2∗0.1+3∗0.4 = 0.3+0.2+1.2 = 1.7.

Exercise in class
Consider the random variable X and its p.d.f

f(x) = 3x2
1[0,1](x).

What is E(X)?
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Again, by definition

E(X) =

∫

R
xf(x) dx =

∫

supp(X)
xf(x) dx =

=

∫ 1

0
x ∗ 3x2 dx = 3

∫ 1

0
x3 dx =

3

4
x4
∣∣1
0

=
3

4
.

Consider a function g : R → R of the random variable X and the new
random variable g(X). The expectation of g(X) is simply

• E(g(X)) =
∑

x∈supp(X) g(x)p(x), if X is discrete

• E(g(X)) =
∫
R g(x)f(x) dx =

∫
x∈supp(X) g(x)f(x) dx, if X is continu-

ous.

Exercise in class
Consider once again the two random variables above and the function g(x) =
x2. What is E(X2)?

• In the discrete example, we have

E(X2) =
∑

x∈supp(X)

x2p(x) = 02∗0.2+12∗0.3+22∗0.1+32∗0.4 = 0.3+0.4+3.6 = 4.3.

• In the continous example, we have

E(X2) =

∫

R
x2f(x) dx =

∫

supp(X)
x2f(x) dx =

=

∫ 1

0
x2 ∗ 3x2 dx = 3

∫ 1

0
x4 dx =

3

5
x5
∣∣1
0

=
3

5
.

A technical note: for a random variable X, the expected value E(X) is
a well-defined quantity whenever E(|X|) < +∞. However, the opposite is
not true. Why is it the case? Let’s first prove that E[|X|] < +∞ implies
E[X] < +∞. This simply follows from the following inequality

E[X] = E[X1(X ≥ 0)] + E[X1(X < 0)]

≤ E[X1(X ≥ 0)] + E[−X1(X < 0)] = E[|X|] < +∞.

What about the other direction? If we assume that E[X] < +∞, then at
most one between E[X1(X ≥ 0)] and E[X1(X < 0)] needs to be finite. In

28



particular, we can take E[X1(X < 0)] = −∞, which implies E[X] = −∞,
hence E[|X|] = +∞.

The expected value operator E is a linear operator: given two random
variables X,Y and scalars a, b ∈ R we have

E(aX) = aE(x)

E(X + Y ) = E(X) + E(Y ).
(21)

For any scalar a ∈ R, we have E(a) = a. To see this, consider the random
variable Y with p.m.f.

p(y) = 1{a}(x) =

{
1 if x = a

0 if x 6= a.

From the definition of E(Y ) it is clear that E(Y ) = a.

Exercise in class
Consider again the continuous random variable X of the previous example.
What is E(X +X2)?

We have E(X +X2) = E(X) + E(X2) = 3
4 + 3

5 = 27
20 .

Beware that in general, for two random variables X,Y , it is not true
that E(XY ) = E(X)E(Y ). However, we shall see later in the class that
this is true when X and Y are independent.

Remark: If X and Y are independent, then f(x) and g(Y ) are indepen-
dent. However, the opposite is not true!

The letter µ is often used to denote the expected value E(X) of a random
variable X, i.e. µ = E(X).

Another very important operator associated to a probability distribution
is the variance. The variance measures how ‘spread’ the distribution of a
random variable is. The variance of a random variable X is defined as

V (X) = E[(X − µ)2] = E(X2)− µ2. (22)

Equivalently, one can write

• if X is discrete:

V (X) =
∑

x∈supp(X)

(x− µ)2p(x) =
∑

x∈supp(X)

x2p(x)− µ2

29



• if X is continuous:

V (X) =

∫

x∈supp(X)
x2f(x) dx− µ2.

Exercise in class
Consider the random variables of the previous examples. What is V (X)?

• In the discrete example, V (X) = E(X2) − [E(X)]2 = 4.3 − (1.7)2 =
4.3− 2.89 = 1.41.

• In the continuous example V (X) = E(X2)− [E(X)]2 = 3/5−(3/4)2 =
3/5− 9/16 = 94/80 = 47/40.

σ2 is often used to denote the variance V (X) of a random variable X,
i.e. σ2 = V (X). The variance of a random variable X is finite as soon as
E(X2) <∞.

Here are two important properties of the variance operator. For any
a ∈ R we have

• V (aX) = a2V (X)

• V (a+X) = V (X).

Exercise in class
Consider the continuous random variable of the previous examples. What

is V
(√

40/47X
)

?

We have

V
(√

40/47X
)

=
40

47
V (X) =

40

47

47

40
= 1.

Beware that in general, for two random variables X,Y , it is not true
that V (X + Y ) = V (X) + V (Y ). However, we shall see later in the course
that this is true when X and Y are independent.

Markov’s Inequality and Tchebysheff’s Inequality

Sometimes we may want to compute or approximate the probability of cer-
tain events involving a random variable X even if we don’t know its distri-
bution (but given that we know its expectation or its variance). Let a > 0.
The following inequalities are useful in these cases:

P (|X| ≥ a) ≤ E(|X|)
a

(Markov’s inequality)

P (|X − µ| ≥ a) ≤ V (X)

a2
(Tchebysheff’s inequality)

(23)
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There are some conditions! The Markov’s inequality can be used if X is
a positive random variable. The Tchebysheff’s Inequality can be used for
any random variable with finite (literally, not infinite) expected value. Let
σ2 = V (X) as usual so that σ is the standard deviation of X. Note that we
can conveniently take a = kσ and the second inequality then reads

P (|X − µ| ≥ kσ) ≤ σ2

kσ2
=

1

k2
(24)

where µ = E(X). Thus, we can easily bound the probability that X devi-
ates from its expectation by more than k times its standard deviation.

Let’s first prove Markov’s inequality.

aE[1(|X| ≥ a)] = E[a1(|X| ≥ a)] =

{
0 if |X| < a

a if |X| ≥ a

therefore we can upper bound it by E[|X|] and the proof is completed.
Tchebysheff’s inequality can be proved via Markov’s. Indeed,

P (|X − µ| ≥ a) = P

( |X − µ|
a

≥ 1

)
= P

( |X − µ|2
a2

≥ 1

)
≤ E[|X − µ|2]

a2

where the last inequality is thanks to Markov’s.
Exercise in class
A call center receives an average of 10,000 phone calls a day, with a standard
deviation of

√
(2000). What is the probability that that there will be more

than 15,000 calls ?
Call X the number of phone calls (a random variable) with

1. Using Markov’s inequality, we knot that

P (X ≥ 15, 000) ≤ E(X)

15, 000
= 2/3

This is quick and easy, but we can do better

2. Using Tchebysheff’s, we get

P (X ≥ 15, 000) = P (X−10, 000 ≥ 5, 000) ≤ P (|X−10, 000| ≥ 5, 000) ≤ 2, 000

5, 0002
= 0.000008.

This is much better than the previous result.

31



Lecture 6

Recommended readings: WMS, sections 3.4 → 3.8

Independent Random Variables

Consider a collection of n random variables X1, . . . , Xn and their joint prob-
ability distribution. Their joint probability distribution can be described in
terms of the joint c.d.f.

FX1,...,Xn(x1, x2, . . . , xn) = P (X1 ≤ x1 ∩X2 ≤ x2 ∩ · · · ∩Xn ≤ xn), (25)

in terms of the joint p.m.f. (if the random variables are all discrete)

pX1,...,Xn(x1, x2, . . . , xn) = P (X1 = x1 ∩X2 = x2 ∩ · · · ∩Xn = xn), (26)

or in terms of the joint p.d.f. fX1,...,Xn (if the random variables are all
continuous).

The random variables X1, . . . , Xn are said to be independent if either of
the following holds:

• FX1,...,Xn(x1, x2, . . . , xn) =
∏n
i=1 FXi(xi)

• (discrete case) pX1,...,Xn(x1, x2, . . . , xn) =
∏n
i=1 pXi(xi)

• (continuous case) fX1,...,Xn(x1, x2, . . . , xn) =
∏n
i=1 fXi(xi).

Then, if we consider an arbitrary collection of events {X1 ∈ A1}, {X2 ∈
A2}, . . . , {Xn ∈ An}, we have that

P (X1 ∈ A1 ∩X2 ∈ A2 ∩ · · · ∩Xn ∈ An) =
n∏

i=1

P (Xi ∈ Ai).

If the random variables also share the same marginal distribution, i.e. we
have

• FXi = F ∀i ∈ {1, . . . , n}

• pXi = p ∀i ∈ {1, . . . , n} (if the random variables are all discrete)

• fXi = f ∀i ∈ {1, . . . , n} (if the random variables are all continuous)

then the random variables X1, . . . , Xn are said to be independent and iden-
tically distributed, usually shortened in i.i.d..
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Probability calculations using sums and products

We can make good use of some basic probability concepts to invoke some
tools for probability calculations! We know that if random events A and
B are independent, then P (A ∩ B) = P (A)P (B). Also, if A and B are
mutually exclusive, then P (A ∪ B) = P (A) + P (B). Take an example of 5
coin flips of an uneven coin that lands on heads with probability p. Then,
the probability of 3 heads happening, P (X = 3) for the random variable X
which counts the number of heads in this scenario, can be calculated using
these two tricks (instead of counting, which we have been doing so far!).
Let’s do this in two steps:

1. What is the probability of a particular outcome HHHTT? This is
simply obtained by multiplying p three times and (1 − p) two times.
Why is this? because within a particular draw, those five coin flips are
independent, so each single outcome’s probability should be multiplied.
(They are not disjoint, as one event does not preclude the possibility
of another event!)

2. What about HHTHT? This outcome is disjoint from the first out-
come HHHTT , or for that matter, any other outcome who is a combi-
nation of 3 H’s and 2 T ’s. They can never happen together, so they are
disjoint events! (They are not independent, because they will never
happen together – in fact, if you know that HHTHT happened, then
you definitely know that HHHTT didn’t happen!) Also, we know
how to count how many such events can happen – it is

(
5
3

)
! So, we can

calculate the aggregate probability of 3 heads and 2 tails happening by
adding the single event’s probability p3(1 − p)2 up exactly

(
5
3

)
times!

i.e.

P (3successesin5trials) =

(
5

3

)
p3(1− p)2 (27)

In general, we are interested in the probability distribution of the r number
of heads out of n trials. We now proceed to learn some common useful
discrete probability distributions.

Frequently Used Discrete Distributions

Notation

The symbol ∼ is an identifier for a random variable, and specifies its pmf.
In statistical jargon, we will say that a random variable has a certain distri-
bution to signify that it has a a certain pmf/pdf.
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Preview

Some ‘named’ discrete distributions that are frequently used are the follow-
ing:

1. Binomial distribution (outcome of n coin flips)

2. Bernoulli distribution (special case of Binomial, n = 1)

3. Multinomial distribution (outcome of n (unfair) die rolls)

4. Geometric distribution (# times to 1st success)

5. Negative binomial distribution (# times to r’th success)

6. Hypergeometric distribution (# times x successes of one class will
happen in n samples taken from population N that has two classes of
size r and N − r)

7. Poisson distribution (number of successes expected in i.i.d., memory-
less process; linked to exponential distribution)

The Binomial Distribution

Consider again tossing a coin (not necessarily fair) n times in such a way that
each coin flip is independent of the other coin flips. By this, we mean that if
Hi denotes the event ‘observing heads on the i-th toss’, then P (Hi ∩Hj) =
P (Hi)P (Hj) for all i 6= j. Suppose that the probability of seeing heads
on each flip is p ∈ [0, 1] (and let’s call the event ‘seeing heads’ a success).
Introduce the random variables

Yi =

{
1 if the i−th flip is a success

0 otherwise

fo i ∈ {0, 1, 2, . . . , n}. The number of heads that we observe (or the number
of successes in the experiment) is

X =
n∑

i=1

Yi.

Under the conditions described above, the random variable X is distributed
according to the Binomial distribution with parameters n ∈ Z+ (number of
trials) and p ∈ [0, 1] (probability of success in each trial). We denote this by
X ∼ Binomial(n, p). The p.m.f. of X is

p(x) =

{(
n
x

)
px(1− p)n−x if x ∈ {0, 1, 2, . . . , n}

0 if x /∈ {0, 1, 2, . . . , n}
(28)

34



Its expectation is E(X) = np and its variance is V (X) = np(1− p).
In particular, when n = 1, we usually say that X is distributed according

to the Bernoulli distribution of parameter p, denoted X ∼ Bernoulli(p). In
this case E(X) = p and V (X) = p(1 − p). Every Xi above is a Bernoulli
distributed random variable.

The sum of binomial random variables is also binomial; i.e. it is closed
to summation. If X1, X2 are independent binomial random variables each
with distribution X1, X2 ∼ Binom(ni, p), Then, the sum Y = X1 +X2 also
follows a binomial distribution, with parameters (n1 + n2, p).
Exercise in class:
Define Z = X1 +X2, then calculate P (Z = z) = P (X1 +X2 = z) by:

P (X1 +X2 = z) =

z∑

x=0

pX1(x)pX2(z − x)

=
z∑

x=0

(
n1

x

)
px(1− p)n1−x

(
n2

z − x

)
pz−x(1− p)n2−z+x

= pz(1− p)n1+n2−z
z∑

x=0

(
n1

x

)(
n2

z − x

)

=

(
n1 + n2

z

)
pz(1− p)n1+n2−z

where the last equality follows from Vandermonde’s identity.
Exercise in class:
Let X denote the number of 6 observed after rolling 4 times a fair die. Then
X ∼ Binomial(n, p) with n = 4 and p = 1/6. What is the probability that
we observe at least 3 times the number 6 in the 4 rolls? What is the expected
number of times that the number 6 is observed in 4 rolls?

We have

P (X ≥ 3) = P (X = 3) + P (X = 4) = p(3) + p(4)

=

(
4

3

)(
1

6

)3(
1− 1

6

)4−3

+

(
4

4

)(
1

6

)4(
1− 1

6

)4−4

= 4 ∗ 1

63

5

6
+

1

64
=

21

64
≈ 0.016

and E(X) = np = 4/6 = 2/3.
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The Geometric Distribution

Consider now counting the number of coin flips needed before the first suc-
cess is observed in the setting described above and let X denote the cor-
responding random variable. Then X has the Geometric distribution with
parameter p ∈ [0, 1], denoted X ∼ Geometric(p). Its p.m.f. is given by

p(x) =

{
(1− p)x−1p if x ∈ {1, 2, 3, . . . }
0 if x /∈ {1, 2, 3, . . . }

(29)

The expected value of X is E(X) = 1/p, while its variance is V (X) =
(1− p)/p2.

The Geometric distribution is one of the distribution that have the so-
called ‘memoryless property’. This means that if X ∼ Geometric(p), then

P (X > x+ y|X > x) = P (X > y)

for any 0 < x ≤ y. To see this, let’s first compute the c.d.f. of X. We have

F (x) = P (X ≤ x) =

{
0 if x < 1

p
∑bxc

y=1(1− p)y−1 if x ≥ 1
=

{
0 if x < 1

p
∑bxc−1

y=0 (1− p)y if x ≥ 1

=

{
0 if x < 1

p1−(1−p)bxc
1−(1−p) if x ≥ 1

=

{
0 if x < 1

1− (1− p)bxc if x ≥ 1.

Let’s look for example to the case 1 < x < y. We have

P (X > x+ y|X > x) =
P (X > x+ y)

P (X > x)
=

1− F (x+ y)

1− F (x)
=

(1− p)bx+yc

(1− p)bxc
= (1− p)byc = P (X > y).

Exercise in class
Consider again rolling a fair die. What is the probability that the first 6 is
rolled on the 4-th roll?

Let X denote the random variable counting the number of rolls needed
to observe the first 6. We have X ∼ Geometric(p) with p = 1/6. Then,

P (X = 4) = p(4) = p(1− p)4−1 =
1

6

53

63
=

53

64
≈ 0.096.
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The Negative Binomial Distribution

Suppose that we are interested in counting the number of coin flips needed in
order to observe the r-th success. If X denotes the corresponding random
variable, then X has the Negative Binomial distribution with parameters
r ∈ Z+ (number of successes) and p ∈ [0, 1] (probability of success on each
trial). We use the notation X ∼ NBinomial(r, p). Its p.m.f. is then

p(x) =

{(
x−1
r−1

)
pr(1− p)x−r if x ∈ {r, r + 1, . . . }

0 if x /∈ {r, r + 1, . . . }.
(30)

The expected value of X is E(X) = r/p and its variance is V (X) =
r(1− p)/p2.

Exercise in class:
Consider again rolling a fair die. What is the probability that the 3rd 6 is
observed on the 5-th roll?

We have X ∼ NBinomial(r, p) with r = 3 and p = 1/6 and

P (X = 5) =

(
5− 1

3− 1

)(
1

6

)3(5

6

)5−3

= 6 ∗ 52

65
≈ 0.019.

Question:
How do the Geometric distribution and the Negative Binomial ditribution
relate?

The Hypergeometric Distribution

Suppose that you have a population of N elements that can be divided into
2 subpopulations of size r and N − r (say the population of ‘successes’ and
‘failures’, respectively). Imagine that you sample n ≤ N elements from
this population without replacement. What is the probability that your
sample contains x successes? To answer this question we can introduce the
random variable X with the Hypergeometric distribution with parameters
r ∈ Z+ (number of successes in the population), N ∈ Z+ population size,
and n ∈ Z+ (number of trials). We write X ∼ HGeometric(r,N, n). Its
p.m.f. is

p(x) =





(rx)(
N−r
n−x)

(Nn)
if x ∈ {0, 1, . . . , r}

0 if x /∈ {0, 1, . . . , r}.
(31)
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The expectation and the variance of X are E(X) = nr/N and

V (X) =
nr

N

N − r
N

N − n
N − 1

.

Exercise in class:
There are 10 candidates for 4 software engineering positions at Google. 7 of
them are female candidates and the remaining 3 are male candidates. If the
selection process at Google is completely random, what is the probability
that only 1 male candidate will be eventually hired?

The number of male candidates hired by Google can be described by
means of the random variable X ∼ Hypergeometric(r,N, n) with r = 3,
N = 10, and n = 4. Then,

P (X = 1) =

(
3
1

)(
7
3

)
(

10
4

) =
3 7!

4!3!
10!
6!4!

=
7!6!

2 ∗ 10!
=

6 ∗ 5 ∗ 4 ∗ 3

10 ∗ 9 ∗ 8
=

1

2
.

The Poisson Distribution

The Poisson distribution can be thought of as a limiting case of the Binomial
distribution. Consider the following example: you own a store and you want
to model the number of people who enter in your store on a given day. In
any time interval of that day, the number of people walking in the store
is certainly discrete, but in principle that number can be any non-negative
integer. We could try and divide the day into n smaller subperiods in such
a way that, as n→∞, only one person can walk into the store in any given
subperiod. If we let n → ∞, it is clear however that the probability p that
a person will walk in the store in an infinitesimally small subperiod of time
is such that p→ 0. The Poisson distribution arises as a limiting case of the
Binomial distribution when n→∞, p→ 0, and np→ λ ∈ (0,∞).

The p.m.f. of a random variable X that has the Poisson distribution
with parameter λ > 0, denoted X ∼ Poisson(λ) is

p(x) =

{
e−λ λ

x

x! if x ∈ {0, 1, 2, 3, . . . }
0 if x /∈ {0, 1, 2, 3, . . . }

(32)

Both the expected value and the variance of X are equal to λ, E(X) =
V (X) = λ.

Poisson random variables have the convenient property of being closed
to summation. if X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) and they are
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independent, then X + Y ∼ Poisson(λ1 + λ2). Exercise in class:
Prove this, using pmfs. Define Z, then calculate P (Z = z) = P (X +Y = z)
by:

P (X + Y = z) =
z∑

x=0

fX(x)fY (z − x)

Exercise in class:
At the CMU USPS office, the expected number of students waiting in line
between 1PM and 2PM is 3. What is the probability that you will see more
than 2 students already in line in front of you, if you go to the USPS office
in that period of time?

Let X ∼ Poisson(λ) with λ = 3 be the number of students in line when
you enter into the store. We want to compute P (X > 2). We have

P (X > 2) = 1− P (X ≤ 2) = 1−
2∑

x=0

p(x) = 1− e−3
2∑

x=0

3x

x!
=

= 1− e−3

(
1 + 3 +

9

2

)
= 1− e−3 17

2
≈ 0.577.

Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution.
Suppose n i.i.d. experiments are performed. Each experiment can lead to r
possible outcomes with probability p1, p2, · · · , pr such that

pi > 0,
r∑

i=0

pi = 1

Now, let Xi be the number of experiments resulting in outcome i ∈ [1, r].
Then, the multinomial distribution characterizes the joint probability of
(X1, X2, · · · , Xn); in other words, it fully describes

P (X1 = x1, X2 = x2, · · · , Xr = xr) (33)

The probability mass function is

pX1,··· ,Xr(x1, · · · , xr) =

{(
n

x1 x2 ··· xr
)
px11 · · · pxrr if

∑r
i=1 xi = n

0 otherwise
(34)

What is the mean? The mean should be defined on each of the Xi, and is
E(Xi) = npi. The variance is V (Xi) = npi(1 − pi). We will later prove
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Age Proportion

18-24 .18
25-34 .23
35-44 .16
45-64 .27
65+ .16

(after we have learned about the concept of covariance) that the variance of
each Xi is V (Xi) = Cov(Xi, Xi) = npi(1 − pi). The covariance of Xi and
Xj is Cov(Xi, Xj) = −npipj .

How should we understand the expectation and variance? We can see
that the marginal probability distribution of Xi as simply Binom(n, pi) –
if we only focus on one variable at a time, each is simply the number of
successes (each success having probability pi) out of n trials!

One might argue that it somehow doesn’t seem like the other outcomes
are ‘irrelevant’, so that each Xi can be treated as a separate binomial ran-
dom variable. He would be partially correct! (about his former point) The
outcomes of Xi and Xj are ‘pitted’ against each other; if Xi is high, then
Xj(j 6= i) should be low, since there are only n draws in total! Indeed, we
will find that these are negatively correlated (and have negative covariance).
Exercise in class
A fair die is rolled 9 times. What is the probability of 1 appearing 3 times,
2 appearing 2 times, 3 appearing 2 times, 4 appearing 1 times, 5 appearing
1 time, and 6 appearing 0 times?
Exercise in class
According to recent census figures, the proportion of adults (18 years or
older of age) in the U.S. associated with 5 age categories are as given in
the following table If the figures are accurate and five adults are randomly
sampled, find the probability that the sample contains one person between
the ages of 18 and 24, two between the ages of 25 and 34, and two between
45 and 64. (Hint: see WMS)
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Lecture 7

Recommended readings: WMS, sections 4.4 → 4.8

Frequently Used Continuous Distributions

In this section, we will describe some of the most commonly used continuous
distribution. In particular, we will focus on three important families which
are often used in the statistical modeling of physical phenomena:

1. the Normal family: this is a class of distributions that is commonly
used to describe physical phenomena where the quantity of interest
takes values (at least in principle) in the range (−∞,∞)

2. the Gamma family: this is a class of distributions which are frequently
used to describe physical phenomena where the quantity of interest
takes non-negative values, i.e. it takes values in the interval [0,∞)

3. the Beta family: this is a class of distributions that is commonly used
to describe physical phenomena where the quantity of interest takes
values in some interval [a, b] of the real line.

We will also focus on some relevant subfamilies of the families mentioned
above.

The Uniform Distribution

The Uniform distribution is the simplest among the continuous distribu-
tions. We say that a random variable X has the Uniform distribution with
parameters a, b ∈ R, a < b, if its p.d.f. is

f(x) =
1

b− a1[a,b](x) =

{
1
b−a if x ∈ [a, b]

0 if x /∈ [a, b].
(35)

In this case, we use the notation X ∼ Uniform(a, b). We have E(X) = a+b
2

and V (X) = (b−a)2

12 .

The Normal Distribution

The Normal distribution is of the most relevant distributions for applications
in Statistics. We say that a random variable X has a Normal distribution
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with parameters µ ∈ R and σ2 ∈ R+ if its p.d.f. is

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

In this case, we write X ∼ N (µ, σ). The parameters of X correspond to
its expectation µ = E(X) and its variance σ2 = V (X). The c.d.f. of
X ∼ N (µ, σ2) can be expressed in terms of the error function erf(·). How-
ever, for our purposes, we will not need to investigate this further.

The Standardized Normal Distribution
Given X ∼ N (µ, σ2), we can always obtain a ‘standardized’ version Z

of X such that Z still has a Normal distribution, E(Z) = 0, and V (Z) = 1
(i.e. Z ∼ N (0, 1)). This can be done by means of the transformation

Z =
X − µ
σ

.

The random variable Z is said to be standardized. Of course, one can also
standardize random variables that have other distributions (as long as they
have finite variance), but unlike the Normal case the resulting standardized
variable may not belong anymore to the same family to which the original
random variable X belonged to.

The Normal family is closed with respect to translation and scaling: if
X ∼ N (µ, σ2), then aX + b ∼ N (aµ+ b, a2σ2) for a 6= 0 and b ∈ R.

Furthermore, if X ∼ N (µ, σ2) and Y ∼ N (ν, τ2) and X and Y are
independent, then X + Y ∼ N (µ+ ν, σ2 + τ2).

We finally mention that it is common notation to indicate the c.d.f. of
Z ∼ N (0, 1) by Φ(·). Notice that Φ(−x) = 1− Φ(x) for any x ∈ R.

The Gamma Distribution

We say that the random variable X has a Gamma distribution with param-
eters α, β > 0 if its p.d.f. is

f(x) =
1

βαΓ(α)
xα−1e

− x
β 1[0,∞)(x). (36)

Notice that the p.d.f. of the Gamma distribution includes the Gamma
function

Γ(α) =

∫ ∞

0
xα−1e−x dx (37)

for α > 0. Useful properties of the Gamma function:
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• For α ∈ Z+, we have that Γ(α) = (α− 1)!.

• For any α > 0, we have Γ(α+ 1) = αΓ(α). 6

Make sure not to confuse the Gamma distribution, described by the p.d.f.
of equation (36), and the Gamma function of equation (37)!

The expectation and the variance of X are respectively E(X) = αβ and
V (X) = αβ2.

The c.d.f. of a Gamma-distributed random variable can be expressed
explicitly in terms of the incomplete Gamma function. Once again, for our
purposes, we don’t need to investigate this further.

We saw that the Normal family is closed with respect to translation
and scaling. The Gamma family is closed with respect to positive scal-
ing only. If X ∼ Gamma(α, β), then cX ∼ Gamma(α, cβ), provided that
c > 0. Furthermore, if X1 ∼ Gamma(α1, β), X2 ∼ Gamma(α2, β), . . . ,
Xn ∼ Gamma(αn, β) are independent random variables, then

∑n
i=1Xi ∼

Gamma (
∑n

i=1 αi, β)

The Exponential Distribution

The Exponential distribution constitutes a subfamily of the Gamma dis-
tribution. In particular, X is said to have an Exponential distribution
with parameter β > 0 if X ∼ Gamma(1, β). In that case, we write X ∼
Exponential(β).

The p.d.f. of X is therefore

f(x) =
1

β
e
− x
β 1[0,∞)(x).

Because the Exponenetial distribution is a subfamily of the Gamma dis-
tribution, we have E(X) = αβ = β and V (X) = αβ2 = β2.

Exercise in class
Compute the c.d.f. of X ∼ Exponential(β).

We have,

F (x) = P (X ≤ x) =

{
0 if x < 0∫ x

0
1
β e
− y
β dy if x ≥ 0

=





0 if x < 0

− e−
y
β

∣∣∣
x

0
if x ≥ 0.

=

{
0 if x < 0

1− e−
x
β if x ≥ 0.

6(This recursive property often comes in handy for computations that involve Gamma-
distributed random variables.)
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We will learn a bit more about this when we revisit Poisson processes
and exponential wait times of events, but we note here that the exponential
distribution also has the property of being ‘memoryless’. For an exponential
random variable X with parameter λ, the following hold

P (X > t+ s|X > t) = P (X > s) (38)

or, equivalently

P (X > t+ s) = P (X > s)P (X > t) (39)

Exercise in class
Prove this. Hint: consider using 1-CDF of exponential distributions.

The Chi-Square Distribution

The Chi-Square distribution is another relevent subfamily of the Gamma
family of distributions. It frequently arises in statistical model-fitting proce-
dures. We say that X has a Chi-Square distribution with ν > 0, ν ∈ N+ ‘de-
grees of freedom’, if X ∼ Gamma(ν/2, 2). In this case, we write X ∼ χ2(ν).
We have E(X) = ν and V (X) = 2ν.

The Chi-square distribution can be formed by the sum of ν independent
standard normal distributions:

If X =
ν∑

i=1

X2
i , then X ∼ χ2(ν)

This distribution is useful when we want to verify (i.e. conduct hypothesis
tests) if two categories are independent (see Pearson’s Chi-square test of
independence) or if a prior belief about proportions of the population in some
category (say, male/female, or income group) is plausible (see Goodness of
fit test for further study).

The Beta distribution

Suppose that you are interested in studying a quantity Y that can only take
values in the interval [a, b] ⊂ R. We can easily transform Y in such a way
that it can only take values in the standard unit interval [0, 1]: it is enough
to consider the normalized version of Y

X =
Y − a
b− a .
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Then, a flexible family of distributions that can be used to model Y is the
Beta family. We say that a random variable X has a Beta distribution with
parameters α, β > 0, denoted X ∼ Beta(α, β), if its p.d.f. is of the form

f(x) =
xα−1(1− x)β−1

B(α, β)
1[0,1](x). (40)

where

B(α, β) =

∫ 1

0
xα−1(1− x)β−1 dx =

Γ(α)Γ(β)

Γ(α+ β)
.

The c.d.f. of X can be expressed explicitly in terms of the incomplete
Beta function

B(x;α, β) =

∫ x

0
yα−1(1− y)β−1 dx,

but we don’t need to investigate this further for our purposes.
The expected value of X is E(X) = α

α+β and its variance is V (X) =
αβ

(α+β)2(α+β+1)
.

A Note on the Normalizing Constant of a Probability Density
Function

Most frequently, a given p.d.f. f takes the form

f(x) = cg(x)

where c is a positive constant and g is a function. The part of f depending on
x, i.e. the function g, is usually called the kernel of the p.d.f. f . Very often
one can guess whether f belongs to a certain family by simply inspecting
g. Then, if f is indeed a density, c > 0 is exactly the ‘right’ constant which
makes f integrate to 1. Therefore, if for any reason c is unknown, but
you can guess that X ∼ f belongs to a certain family of distributions for
a particular value of its parameters, in order to figure out c one does not
necessarily have to compute

c =

(∫

supp(X)
g(x) dx

)−1

.

Let us illustrate this by means of two examples:

• Let f(x) = ce−
x
21[0,∞)(x) and we want to figure out what c is. Here

g(x) = e−
x
21[0,∞)(x) is the kernel of an Exponential p.d.f. with pa-

rameter β = 2. We know therefore that c must be equal to c = 1/β.
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• Let f(x) = cx4(1 − x)5
1[0,1](x) and again suppose that we want to

figure out the value of c. Here g(x) = x4(1− x)5
1[0,1](x) which is the

kernel of a Beta p.d.f. with parameters α = 5 and β = 6. We know
therefore that c must be the number

c =
Γ(α+ β)

Γ(α)Γ(β)
=

Γ(5 + 6)

Γ(5)Γ(6)
=

10!

4!5!
= 1260.

Extra: Simulations of random variables

Fun stuff: If we have time, we will try some simulations of some random
variables (Normal, Poisson, Exponential, Gamma with different parame-
ters, etc.), overlay pmf/pdfs on them to show dependence on n. Also, as a
preview, we will see simulated examples of the central limit theorem phe-
nomenon. Also, we will see 2d scatter plots and 3d density plots of a inde-
pendent/positively correlated normal distributions.
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Lecture 8

Recommended readings: WMS, sections 5.1 → 5.4

Multivariate Probability Distributions

So far we have focused on univariate probability distributions, i.e. probabil-
ity distributions for a single random variable. However, when we discussed
independence of random variables in Lecture 6, we introduced the notion of
joint c.d.f., joint p.m.f., and joint p.d.f. for a collection of n random variables
X1, . . . , Xn. In this lecture we will elaborate more on these objects.

Let X1, . . . , Xn be a collection of n random variables.

• Regardless of whether they are discrete or continuous, we denote by
FX1,...,Xn their joint c.d.f., i.e. the function

FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1 ∩ · · · ∩Xn ≤ xn).

• If they are all discrete, we denote by pX1,...,Xn their joint p.m.f., i.e.
the function

pX1,...,Xn(x1, . . . , xn) = P (X1 = x1 ∩ · · · ∩Xn = xn).

• If they are all continuous, we denote by fX1,...,Xn their joint p.d.f..

The above functions satisfy properties that are similar to those satisfied by
their univariate counterparts.

• The joint c.d.f. FX1,...,Xn satisfies:

– FX1,...,Xn(x1, . . . , xn) ∈ [0, 1] for any x1, . . . , xn ∈ R.

– FX1,...,Xn is monotonically non-decreasing in each of its variables

– FX1,...,Xn is càdlàg (right-continuous with left limits with respect
to every variable)

– limxi→−∞ FX1,...,Xn(x1, . . . , xi, . . . , xn) = 0 for any i ∈ {1, . . . , n}
– limx1→+∞,...,xn→+∞ FX1,...,Xn(x1, . . . , xn) = 1

• The joint p.m.f. satisfies:

– pX1,...,Xn(x1, . . . , xn) ∈ [0, 1] for any x1, . . . , xn ∈ R.

–
∑

x1∈supp(X1) · · ·
∑

xn∈supp(Xn) pX1,...,Xn(x1, . . . , xn) = 1.
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• The joint p.d.f. satisfies:

– fX1,...,Xn(x1, . . . , xn) ≥ 0 for any x1, . . . , xn ∈ R.

–
∫
R . . .

∫
R fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn

=
∫

supp(X1) . . .
∫

supp(Xn) fX1,...,Xn(x1, . . . , xn) dxn . . . dx1 = 1.

Furthermore we have

FX1,...,Xn(x1, . . . , xn) =
∑

y1≤x1
y1∈supp(X1)

· · ·
∑

yn≤xn
yn∈supp(Xn)

p(y1, . . . , yn)

and

FX1,...,Xn(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
fX1,...,Xn(y1, . . . , yn) dyn . . . dy1

Exercise in class:
You are given the following bivariate p.m.f.:

pX1,X2(x1, x2) =





1
8 if (x1, x2) = (0,−1)
1
4 if (x1, x2) = (0, 0)
1
8 if (x1, x2) = (0, 1)
1
4 if (x1, x2) = (2,−1)
1
4 if (x1, x2) = (2, 0)

0 otherwise.

What is P (X1 ≤ 1 ∩X2 ≤ 0) = FX1,X2(1, 0)? We have

FX1,X2(1, 0) = pX1,X2(0,−1) + pX1,X2(0, 0) =
1

8
+

1

4
=

3

8
.

Draw figure of bivariate pmf here.

Exercise in class:
You are given the following bivariate p.d.f.:

fX1,X2(x1, x2) = e−(x1+x2)
1[0,∞)×[0,∞)(x1, x2)

• What is P (X1 ≤ 1 ∩X2 > 5)?

• What is P (X1 +X2 ≤ 3)?
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We have

P (X1 ≤ 1 ∩X2 > 5) =

∫ 1

∞

∫ ∞

5
fX1,X2(x1, x2) dx1dx2 =

∫ 1

0

∫ ∞

5
e−(x1+x2) dx1dx2

=

∫ 1

0
e−x1 dx1

∫ ∞

5
e−x2 dx2 =

(
− e−x1

∣∣1
0

) (
− e−x2

∣∣∞
5

)

=
(
1− e−1

)
e−5.

and

Draw figure of bivariate pdf here.

P (X1 +X2 ≤ 3) =

∫ 3

0

∫ 3−x1

0
e−(x1+x2) dx2dx1 =

∫ 3

0
e−x1

∫ 3−x1

0
e−x2 dx2dx1

=

∫ 3

0
e−x1

(
−e−x2

∣∣3−x1
0

)
dx1 =

∫ 3

0
e−x1

(
1− ex1−3

)
dx1

=

∫ 3

0

(
e−x1 − e−3

)
dx1 =

(
− e−x1

∣∣3
0

)
− 3e−3 = 1− 4e−3.

Marginal Distributions

Given a collection of random variables X1, . . . , Xn and their joint distribu-
tion, how can we derive the marginal distribution of only one of them, say
Xi? The idea is summing or integrating the joint distribution over all the
variables except for Xi.

Draw figure of marginalizing a bivariate pmf here.

Thus, given pX1,...,Xn we have that

pXi(xi) =
∑

y1∈supp(X1)

· · ·
∑

yi−1∈supp(Xi−1)

∑

yi+1∈supp(Xi+1)

· · ·
∑

yn∈supp(Xn)

pX1,...,Xn(x1, . . . , xi−1, xi, xi+1, . . . , xn).

and given fX1,...,Xn we have

fXi(xi) =

∫

R
. . .

∫

R

∫

R
. . .

∫

R
fX1,...,Xn(x1, . . . , xi−1, xi, xi+1, . . . , xn) dxn . . . dxi+1dxi−1 . . . dx1

=

∫

supp(X1)
. . .

∫

supp(Xi−1)

∫

supp(Xi+1)
. . .

∫

supp(Xn)
fX1,...,Xn(x1, . . . , xi−1, xi, xi+1, . . . , xn)

dxn . . . dxi+1dxi−1 . . . dx1.
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Exercise in class:
Consider again the bivariate p.m.f.

pX1,X2(x1, x2) =





1
8 if (x1, x2) = (0,−1)
1
4 if (x1, x2) = (0, 0)
1
8 if (x1, x2) = (0, 1)
1
4 if (x1, x2) = (2,−1)
1
4 if (x1, x2) = (2, 0)

0 otherwise.

Derive the marginal p.m.f. of X2.
Notice first that supp(X2) = {−1, 0, 1}. We have

pX2(−1) = pX1,X2(0,−1) + pX1,X2(2,−1) =
1

8
+

1

4
=

3

8

pX2(0) = pX1,X2(0, 0) + pX1,X2(2, 0) =
1

4
+

1

4
=

1

2

pX2(1) = pX1,X2(0, 1) =
1

8
.

Thus,

pX2(x2) =





3
8 if x2 = −1
1
2 if x2 = 0
1
8 if x2 = 1

0 if x2 /∈ {−1, 0, 1}
Exercise in class:
Consider again the bivariate p.d.f.

fX1,X2(x1, x2) = e−(x1+x2)
1[0,∞)×[0,∞)(x1, x2).

Derive the marginal p.d.f. of X1.
Notice first that supp(X1) = [0,∞). For x1 ∈ [0,∞) we have

fX1(x1) =

∫

R
fX1,X2(x1, x2) dx2 = e−x1

∫ ∞

0
e−x2 dx2 = e−x1 .

Thus,
fX1(x1) = e−x11[0,∞)(x1).
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Conditional Distributions

We will limit our discussion here at the bivariate case, but all that follows
is easily extended to more than two random variables.

Suppose that we are given a pair of random variables X1, X2 and we
want to compute probabilities of the type

P (X1 ∈ A1|X2 = x2)

for a particular fixed value x2 of X2. To do this, we need either the condi-
tional p.m.f. (if X1 is discrete) or the conditional p.d.f. (if X1 is continuous)
of X1 given X2 = x2. By definition, we have

pX1|X2=x2(x1) =
pX1,X2(x1, x2)

pX2(x2)

fX1|X2=x2(x1) =
fX1,X2(x1, x2)

fX2(x2)
.

Notice the two following impotant facts:

1. pX1|X2=x2 and fX1|X2=x2 are not well-defined if x2 is such that pX2(x2) =
0 and fX2(x2) = 0 respectively (i.e. x2 /∈ supp(X2))

2. given x2 ∈ supp(X2), pX1|X2=x2 and fX1|X2=x2 are null whenever
pX1,X2(x1, x2) = 0 and fX1,X2(x1, x2) = 0 respectively.

So whenever you are computing a conditional distribution, it is good prac-
tice to 1) determine the support of the conditioning variable X2 and clearly
state that the conditional distribution that you are about to compute is only
well-defined for x2 ∈ supp(X2) and 2) given x2 ∈ supp(X2), clarify for which
values of x1 ∈ R the conditional distribution pX1|X2=x2 and fX1|X2=x2 is null.

Exercise in class:
Consider again the bivariate p.m.f.

pX1,X2(x1, x2) =





1
8 if (x1, x2) = (0,−1)
1
4 if (x1, x2) = (0, 0)
1
8 if (x1, x2) = (0, 1)
1
4 if (x1, x2) = (2,−1)
1
4 if (x1, x2) = (2, 0)

0 otherwise.
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Derive the conditional distribution of X1 given X2.
First of all notice that the conditional p.m.f. of X1 given X2 = x2 is

only well-defined for x2 ∈ supp(X2) = {−1, 0, 1}. Then we have

pX1|X2=−1(x1) =





pX1,X2
(0,−1)

pX2
(−1) if x1 = 0

pX1,X2
(2,−1)

pX2
(−1) if x1 = 2

0 if x1 /∈ {0, 2}
=





1/8
3/8 if x1 = 0
1/4
3/8 if x1 = 2

0 if x1 /∈ {0, 2}

=





1
3 if x1 = 0
2
3 if x1 = 2

0 if x1 /∈ {0, 2}

pX1|X2=0(x1) =





pX1,X2
(0,0)

pX2
(0) if x1 = 0

pX1,X2
(2,0)

pX2
(0) if x1 = 2

0 if x1 /∈ {0, 2}
=





1/4
1/2 if x1 = 0
1/4
1/2 if x1 = 2

0 if x1 /∈ {0, 2}

=





1
2 if x1 = 0
1
2 if x1 = 2

0 if x1 /∈ {0, 2}

pX1|X2=1(x1) =

{
pX1,X2

(0,1)

pX2
(1) if x1 = 0

0 if x1 6= 0
=

{
1/8
1/8 if x1 = 0

0 if x1 6= 0

=

{
1 if x1 = 0

0 if x1 6= 0.

Exercise in class:
Consider again the bivariate p.d.f.

fX1,X2(x1, x2) = e−(x1+x2)
1[0,∞)×[0,∞)(x1, x2).

Derive the conditional p.d.f. of X2 given X1.
First of all notice that the conditional p.m.f. of X2 given X1 = x1 is

only well-defined for x1 ∈ supp(X1) = [0,∞). For x1 ∈ [0,∞), we have

fX2|X1=x1(x2) =
fX1,X2(x1, x2)

fX1(x1)
=
e−(x1+x2)

1[0,∞)×[0,∞)(x1, x2)

e−x11[0,∞)(x1)

=
e−(x1+x2)

1[0,∞)(x2)

e−x1
= e−x21[0,∞)(x2).
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Technical note: you may wonder why, if X1, X2 are continuous r.v’s,
P (X1 ∈ A1|X2 = x2) is even defined after all. Indeed, the event P (X2 = x2)
has probability zero. However, intuitively this probability should still make
sense. In order to overcome this kind of issue, we should dive into regular
conditional probabilities. In its simplest form, think about the following
decompoition

FX1(x1) =

∫ +∞

−∞
FX1|X2=x2(x1)fX2(x2)dx2.

We also know that

FX1(x1) =

∫ x1

−∞
fX1(y1)dy1 =

∫ +∞

−∞

∫ x1

−∞
fX1,X2(y1, y2)dy1dy2.

Therefore we would like the following equality to hold

FX1|X2=x2(x1)fX2(x2) =

∫ x1

−∞
fX1,X2(y1, y2)dy1.

We call exactly this expression the conditional density function of X1 with
respect to X2.

A Test for the Independence of Two Random Variables

Suppose that you are given (X1, X2) ∼ fX1,X2 . If

1. the support of fX1,X2 is a ‘rectangular’ region and

2. fX1,X2(x1, x2) = fX1(x1)fX2(x2) for all x1, x2 ∈ R

then X1 and X2 are independent. The same is true for the case where
(X1, X2) is discrete, after obvious changes to 1). Notice that 1) can be con-
veniently captured by appropriately using indicator functions.

Exercise in class:
Consider the following bivariate p.d.f.:

fX1,X2(x1, x2) = 6(1− x2)1{0≤x1≤x2≤1}(x1, x2).

Are X1 and X2 independent?
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A Note on Independence and Normalizing Constants

Frequently, the p.d.f. (and the same holds true for a p.m.f.) of a pair of
random variables takes the form

fX1,X2(x1, x2) = cg(x1)h(x2) (41)

where c > 0 is a constant, g is a function depending only on x1 and h is a
function depending only on x2. If this is the case, the two random variables
X1 and X2 are independent and g and h are the kernels of the p.d.f. of
X1 and X2 respectively. Thus, by simply inspecting g and h we can guess
to which family of distributions X1 and X2 belong to. We do not need to
worry about the constant c, as we know that if fX1,X2 is a bona fide p.d.f.,
then c = c1c2 is exactly equal to the product of the normalizing constants
c1 and c2 that satisfy

c1

∫

R
g(x) dx = c2

∫

R
h(x) dx = 1. (42)

This easily generalizes to a collection of n > 2 random variables.
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Lecture 9

Recommended readings: WMS, sections 5.5 → 5.8

Expected Value in the Context of Bivariate Distributions (part
1)

In Lecture 5, we introduced the concept of expectation or expected value of
a random variable. We will now introduce other operators that are based on
the expected value operator and we will investigate how they act on bivariate
distributions. While we focus on bivariate distributions, it is worthwile to
keep in mind that all that we discuss in this Lecture can be extended to
collections of random variables X1, . . . , Xn with n > 2.

For a function

g :R2 → R
(x1, x2) 7→ g(x1, x2)

and a pair of random variables (X1, X2) with joint p.m.f. pX1,X2 (if discrete)
or joint p.d.f. fX1,X2 (if continuous), the expected value of g(X1, X2) is
defined as

E(g(X1, X2)) =
∑

x1∈supp(X1)

∑

x2∈supp(X2)

g(x1, x2)pX1,X2(x1, x2) (discrete case)

E(g(X1, X2)) =

∫

R

∫

R
g(x1, x2)fX1,X2(x1, x2) dx1dx2 if X1 and X2 (continuous case).

Expectation, Variance and Independence

In Lecture 5, we pointed out that in general, given two random variables X1

and X2, it is not true that E(X1X2) = E(X1)E(X2). We said, however, that
it is true as soon as X1 and X2 are independent. Let’s see why. Without loss
of generality, assume that X1 and X2 are continous (for the discrete case,
just change integration into summation as usual). If they are independent,
fX1,X2 = fX1fX2 . Take g(x1, x2) = x1x2. Then, we have

E(X1X2) =

∫

R

∫

R
x1x2fX1,X2(x1, x2) dx1dx2

=

∫

R

∫

R
x1x2fX1(x1)fX2(x2) dx1dx2 =

∫

R
x1fX1(x1) dx1

∫

R
x2fX2(x2) dx2

= E(X1)E(X2).
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The above argument is easily extended to show that for any two functions
g1, g2 : R → R, if X1 and X2 are independent, then E(g1(X1)g2(X2)) =
E(g1(X1)g2(X2)).

Therefore remember that independence implies E[XY ] = E[X]E[Y ], but
the opposite does not hold always hold.
Exercise in class:
Consider the following bivariate p.d.f.:

fX1,X2(x1, x2) =
3

2
e−3x11[0,∞)×[0,2](x1, x2).

Are X1 and X2 independent? Why? What are their marginal distributions?
Compute E(3XY + 3).

Exercise in class:
Consider the pair of random variables X1 and X2 with joint p.d.f.

fX1,X2(x1, x2) =
1

8
x1e
−(x1+x2)/2

1[0,∞)×[0,∞)(x1, x2)

and consider the function g(x, y) = y/x. What is E(g(X1, X2))?
First of all, notice that X1 and X2 are independent. Therefore, we know

already that E(g(X1, X2)) = E(X2/X1) = E(X2)E(1/X1). Moreover, the
kernel of the p.d.f. of X1 is

x1e
−x1/21[0,∞)(x1)

while that of the p.d.f. of X2 is

e−x2/21[0,∞)(x2).

Thus, X1 andX2 are distributed according to Gamma(2, 2) and Exponential(2)
respectively. It follows that E(X2) = β = 2. We only need to compute
E(1/X1). This is equal to

E

(
1

X1

)
=

∫ ∞

0

1

x1
fX1(x1) dx =

∫ ∞

0

1

x1

1

4
x1e
−x1

2 dx

=
1

4

∫ ∞

0
e−

x1
2 dx =

1

4
2 =

1

2
.

It follows that E(X2/X1) = E(X2)E(1/X1) = 2(1/2) = 1.
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Back to Lecture 5 again. There we mentioned that for two random
variables X and Y , V (X+Y ) 6= V (X)+V (Y ) usually, but that the result is
true if X and Y are independent. Now, we can easily see that if X and Y are
independent and we take the functions g1 = g2 = g with g(X) = X−E(X),
by our previous results we have

V (X + Y ) = E[(X + Y − (E(X) + E(Y )))2] = E[((X − E(X)) + (Y − E(Y )))2]

= E[(X − E(X))2 + (Y − E(Y ))2 + 2(X − E(X))(Y − E(Y ))]

= E[(X − E(X))2] + E[(Y − E(Y ))2] + 2E(X − E(X))E(Y − E(Y ))

= V (X) + V (Y ) + 2 ∗ 0 ∗ 0 = V (X) + V (Y ).
(43)

Notice that we exploited the independence of X and Y together with the re-
sults above to deal with the expectation of the cross-product 2(X−E(X))(Y−
E(Y )) with g1 = g2 = g.

Question: what about V (X − Y )?

Covariance

The covariance of a pair of random variables X and Y is a measure of their
linear dependence. By definition, the covariance between X and Y is

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ). (44)

It is easy to check that the covariance operator satisfies, for a, b, c, d ∈ R

Cov(a+ bX, c+ dY ) = bdCov(X,Y ).

Also, notice that Cov(X,Y ) = Cov(Y,X) and Cov(X,X) = V (X).

Question: suppose that X and Y are independent. What is Cov(X,Y )?

There exists a scaled version of the covariance which takes values in
[−1, 1]. This is the correlation between X and Y . The correlation between
X and Y is defined as

Cor(X,Y ) =
Cov(X,Y )√
V (X)V (Y )

. (45)

It is easy to check that for a, b, c, d ∈ R with b, d 6= 0, we have Cor(a +
bX, c+dY ) = Cor(X,Y ). So, unlike the covariance operator, the correlation
operator is not affected by affine transformations of X and Y .
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Beware that while we saw thatX and Y are independent =⇒ Cov(X,Y ) =
0, the converse is not true (i.e. independence is stronger than uncorrela-
tion). Consider the following example. Let X be a random variable with
E(X) = E(X3) = 0. Consider Y = X2. Clearly, X and Y are not indepen-
dent (in fact, Y is a deterministic function of X!). However,

Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(X ∗X2)− 0 = E(X3) = 0.

So X and Y are uncorrelated, because Cor(X,Y ) = 0, but they are not
independent!

Exercise in class:
Look back at equation (43). Without assuming that X and Y are inde-
pendent, but rather only making the weaker assumption that X and Y are
uncorrelated (i.e. Cov(X,Y ) = 0), show that

V (X + Y ) = V (X − Y ) = V (X) + V (Y ).

From the discussion above it is clear that in general

V (X + Y ) = V (X) + V (Y ) + 2Cov(X,Y )

V (X − Y ) = V (X) + V (Y )− 2Cov(X,Y ).

This generalizes as follows. Given a1, . . . , an ∈ R and X1, . . . , Xn,

V

(
n∑

i=1

aiXi

)
=

n∑

i=1

a2
iV (Xi) +

n∑

i=1

n∑

j=1
j 6=i

aiajCov(Xi, Xj)

=
n∑

i=1

a2
iV (Xi) +

∑

1≤i<j≤n
2aiajCov(Xi, Xj).

If the random variables X1, . . . , Xn are all pairwise uncorrelated, then obvi-
ously the second summand above is null.

Exercise in class:
You are given three random variables X,Y, Z with V (X) = 1, V (Y ) = 4,
V (Z) = 3, Cov(X,Y ) = 0, Cov(X,Z) = 1, and Cov(Y, Z) = 1. Compute
V (3X + Y − 2Z).

We have

V (3X + Y − 2Z) = V (3X) + V (Y ) + V (−2Z) + 2Cov(3X,Y ) + 2Cov(3X,−2Z) + 2Cov(Y,−2Z)

= 9V (X) + V (Y ) + 4V (Z) + 6Cov(X,Y )− 12Cov(X,Z)− 4Cov(Y,Z)

= 9 + 4 + 12− 12− 4 = 9.
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Exercise in class:
Recall the multinomial distribution from the lecture about discrete distribu-
tions. Suppose that (X1, . . . , Xk) has a Multinomial(p1. . . . , pk) distribution.
We want to prove:

Cov[Xi, Xj ] = −npipj .
The trick is to treat a multinomial experiment as a sequence of n inde-

pendent trials, Yt. 1Yt=i is the random variable which takes the value of 1
if the t’th outcome Yt took value i, and notice that Xi =

∑n
t=1 1Yt=i and

Xj =
∑n

t=1 1Yt=j .
Then, proceed as follows: Now, if s = t,

Cov[1Yt=i, 1Ys=j ] = −E[1Yt=i]E[1Yt=j ] = −pipj ,

while if s 6= t
Cov[1Yt=i, 1Ys=j ] = 0

by independence.

Cov[Xi, Xj ] = −npipj =
n∑

t=1

n∑

s=1

Cov[1Yt=i, 1Ys=j ].

Hence the result.
Remark: Why is ρ(X,Y ) := Cor(X,Y ) ∈ [−1, 1]? In order to answer this
question, we will need Cauchy-Schwarz (CS) inequality. An application of
this inequality gives us the following bound:

|E[ZQ]| ≤ (E[Z2])2(E[Q2])2

In particular, notice the absolute value. The more general version of this
inequality is known as Holder inequality. CS inequality, although simple,
is one of the most powerful tools used in Statistics. Now, if we take Z :=
X − E[X] and Q := Y − E[Y ], we have

|cov(X,Y )| ≤
√
V ar(X)

√
V ar(Y ).

It follows that

−
√
V ar(X)

√
V ar(Y ) ≤ cov(X,Y ) ≤

√
V ar(X)

√
V ar(Y )

hence
Cor(X,Y ) ∈ [−1, 1].
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Lecture 10

Recommended readings: WMS, section 5.11

Expected Value in the Context of Bivariate Distributions (part
2)

Using conditional distributions, we can define the notion of conditional ex-
pectation, conditional variance, and conditional covariance.

Introduction Conditional expectation can first be thought of as simply
the expectation of a (discrete for now) random variable X given an event A:

E(X|A) =
∑

x∈supp(X)

xpX|A(x|A)

Conditional expectation E(X|A) has all the properties of regular expecta-
tion. In particular:

1. E(f(X)|A] =
∑

x∈supp(X) f(x)pX|A(x|A)

2. E[aX + b|A] = aE[X|A] + b ∀a, b

Set A = {Y = y}:

⇒ E[X|Y = y] =
∑

x∈supp(X)

xpX|Y (x|y)

Where E[X|Y = y] is the conditional expectation of X given Y = y. Now,
Write E[X|Y ] where X and Y are r.v.’s as the random variable, which is
a function of Y , whose value when Y = y is E[X|Y = y]. So think of
E[X|Y ] = g(Y ) for some function g.

From here on, the distinction between how we refer to the two may be
blurred i.e. we will call both E(X|A) and E(X|Y ) conditional expectations,
but it should be clear which it is referring to, from context.

Conditional Expectation

Given a conditional p.m.f. pX1|X2=x2 or a conditional p.d.f. pX1|X2=x2 the
conditional expectation of X1 given X2 = x2 is defined as

E(X1|X2 = x2) =
∑

x1∈supp(X1)

x1pX1|X2=x2(x1) (46)
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in the discrete case and as

E(X1|X2 = x2) =

∫

x1∈supp(X1)
x1fX1|X2=x2(x1) dx1 (47)

in the continuous case.
It is clear from the definition that the conditional expectation is a func-

tion of the value of X2. Since X2 is a random variable, this means that
the conditional expectation (despite its name) is itself a random variable!
This is a fundamental difference with respect to the standard concept of
expectation for a random variable (for instance E(X1)) which is just a con-
stant depending on the distribution of X1. In terms of notation, we often
denote the random variable corresponding to the conditional expectation of
X1 given X2 simply as E(X1|X2).

Note that if X1 and X2 are independent, then E(X1|X2) = E(X1).
Conditional expectation has the so-called ‘tower property’, or law of total

expectation, which says that

E(E(X1|X2)) = E(X1)

where the outer expectation is taken with respect to the probability distri-
bution of X2. This is easier to understand in the context of discrete random
variables.
Exercise: Prove this, for discrete and continuous case. Hint: carefully write
down the expression for E(E(X1|X2)), where E(X1|X2) can be treated as a
random variable and a function of X2. You may even write it as g(X2) if it
makes it clear. Then, work on the double sum (discrete) or double integral
(continuous).

Conditional Variance

We can also define the conditional variance of X1 given X2. We have

V (X1|X2) = E[(X1 − E(X1|X2))2|X2] = E(X2
1 |X2)− [E(X1|X2)]2 (48)

Obtaining the unconditional variance from the conditional variance is a little
‘harder’ than obtaining the unconditional expectation from the conditional
expectation:

V (X1) = E[V (X1|X2)] + V [E(X1|X2)].

Note that if X1 and X2 are independent, then V (X1|X2) = V (X1).
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Conditional Covariance

It is worthwhile mentioning that we can also define the conditional covari-
ance between X1 and X2 given a third random variable X3. We have

Cov(X1, X2|X3) = E[(X1 − E(X1|X3))(X2 − E(X2|X3))|X3]

= E(X1X2|X3)− E(X1|X3)E(X2|X3).
(49)

To get the unconditional covariance we have the following formula:

Cov(X1, X2) = E[Cov(X1, X2|X3)] + Cov[E(X1|X3), E(X2|X3)]. (50)

Note that if X1 and X3 are independent, and X2 and X3 are independent,
then Cov(X1, X2|X3) = Cov(X1, X2).

In terms of computation, everything is essentially unchanged. The only
difference is that we sum or integrate against the conditional p.m.f./conditional
p.d.f. rather than the marginal p.m.f./marginal p.d.f..

Exercise in class:
Consider again the p.d.f. of exercise 7 in Homework 5:

fX1,X2(x1, x2) = 6(1− x2)1{0≤x1≤x2≤1}(x1, x2).

What is E(X1|X2)? Compute E(X1).
We first need to compute fX1|X2=x2 for x2 ∈ supp(X2). For x2 ∈ [0, 1]

we have

fX2(x2) =

∫ x2

0
6(1− x2)1[0,1](x1) dx1 = 6x2(1− x1)1[0,1](x1)

Notice that from the marginal p.d.f. of X2 we can see that X2 ∼ Beta(2, 2).
For x2 ∈ (0, 1) we have

fX1|X2=x2(x1) =
fX1,X2(x1, x2)

fX2(x2)
=

6(1− x2)1[0,x2](x1)

6x2(1− x2)

=
1

x2
1[0,x2](x1)

Notice that fX1|X2=x2 is the p.d.f. of a Uniform(0, x2) distribution. It follows
that E(X1|X2 = x2) = x2/2. We can write this more concisely (and in a
way that stresses more the fact that the conditional expectation is a random
variable!) as E(X1|X2) = X2/2.
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We have E(X1) = E[E(X1|X2)] = E(X2/2) = E(X2)/2 = [(2/(2 +
2)]/2 = 1/4.

Exercise in class:
Let N ∼ Poisson(λ) and let Y1, . . . , YN

i.i.d.∼ Gamma(α, β) with N inde-
pendent of each of the Yi’s. Let T =

∑N
i=1 Yi. Compute E(T |N), E(T ),

V (T |N), and V (T ).
We have that

E(T |N = n) = E

(
N∑

i=1

Yi|N = n

)
=

n∑

i=1

E(Yi|N = n)

=

n∑

i=1

E(Yi) = nαβ.

Thus, E(T |N) = Nαβ. Now,

E(T ) = E[E(T |N)] = E(Nαβ) = αβE(N) = αβλ.

The conditional variance is

V (T |N = n) = V

(
N∑

i=1

Yi|N = n

)
= V

(
n∑

i=1

Yi|N = n

)

=

n∑

i=1

V (Yi|N = n) =

n∑

i=1

V (Yi) = nαβ2.

Thus, V (T |N) = Nαβ2. The unconditional variance of T is then

V (T ) = V [E(T |N)] + E[V (T |N)] = V (Nαβ) + E(Nαβ2)

= α2β2V (N) + αβ2E(N)

= α2β2λ+ αβ2λ

= αβ2λ(1 + α).

Exercise in class:
Let Q ∼ Uniform(0, 1) and Y |Q ∼ Binomial(n,Q). Compute E(Y ) and
V (Y ).

We have

E(Y ) = E[E(Y |Q)] = E(nQ) = nE(Q) = n/2
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and

V (Y ) = V [E(Y |Q)] + E[V (Y |Q)] = V (nQ) + E(nQ(1−Q))

= n2V (Q) + nE(Q−Q2) =
n2

12
+ nE(Q)− nE(Q2)

=
n2

12
+
n

2
− n(V (Q) + [E(Q)]2)

=
n2

12
+
n

2
− n

12
− n

4

=
n2

12
+
n

6
=
n

6
(n/2 + 1).
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Lecture 11

Recommended readings: WMS, sections 6.1 → 6.4

Functions of Random Variables and Their Distributions

Suppose that you are given a random variable X ∼ FX and a function
g : R→ R. Consider the new random variable Y = g(X). How can we find
the distribution of Y ? This is the focus of this lecture.

There are two approaches that one can typically use to find the distri-
bution of a function of a random variable Y = g(X): the first approach is
based on the c.d.f., the other approach is based on the change of variable
technique. The former is general and works for any function g, the latter
requires some assumptions on g, but it is generally faster than the general
approach based on the c.d.f..

Remark: recall that thanks to the law of the unconscious statistician
(LOTUS), you already know how to compute quantities such as E[g(X)],
etc... Here we only focus on computing the distribution of g(X). The com-
putation of quantities such as E[g(X)] is typically easier with

The method of the cumulative distribution function

The idea is pretty simple. You know that X ∼ FX and you want to find
FY . The process is as follows:

1. FY (y) = P (Y ≤ y) by definition

2. P (Y ≤ y) = P (g(X) ≤ y), since Y = g(X)

3. now you want to express the event {g(X) ≤ y} in terms of X, since
you know the distribution of X only

4. let A = {x ∈ R : g(x) ≤ y}; then {g(X) ≤ y} = {X ∈ A}

5. it follows that P (g(X) ≤ y) = P (X ∈ A) which can typically be
expressed in terms of FX

6. (EXTRA) once you have FX , the p.m.f. or the p.d.f. of X can be
easily derived from it.

Exercise in class:
Let Z ∼ N (0, 1) and g(x) = x2. Consider Y = g(Z) = Z2. What is the
probability distribution of Y ?
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Following the steps above, we have

FY (y) = P (Y ≤ y) = P (Z2 ≤ y) =

{
0 if y < 0

P (|Z| ≤ √y) if y ≥ 0.

=

{
0 if y < 0

P (Z ∈ [−√y,√y]) if y ≥ 0.

Notice that in this case A = [−√y,√y]. It follows that

FY (y) =

{
0 if y < 0

P (Z ∈ [−√y,√y]) if y ≥ 0.
=

{
0 if y < 0

Φ(
√
y)− Φ(−√y) if y ≥ 0.

=

{
0 if y < 0

2Φ(
√
y)− 1 if y ≥ 0.

Let φ denote the standard normal p.d.f.

φ(x) =
1√
2π
e
x2

2 .

The p.d.f. of Y = Z2 is therefore

fY (y) =

{
0 if y ≤ 0

1√
yφ(
√
y) if y > 0

=

{
0 if y ≤ 0

1√
2π
y−

1
2 e−

y
2 if y > 0

Notice that this is the p.d.f. of a Gamma(1
2 , 2) ≡ χ2(1) distribution.

Exercise in class: the probability integral transform
Consider a continuous random variable X ∼ FX where FX , the distribution
of X is strictly increasing. Consider the random variable Y = FX(X). What
is the probablity distribution of Y ?

The transformation Y = FX(X) is usually called the probability integral
transform. To see why, notice that

Y = FX(X) =

∫ X

−∞
fX(y) dy.

We have

FY (y) = P (Y ≤ y) = P (FX(X) ≤ y) =





0 if y < 0

P (X ≤ F−1
X (y)) if y ∈ [0, 1)

1 if y ≥ 1.
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In this case, therefore, A = (−∞, F−1
X (y)]. Then,

FY (y) =





0 if y < 0

P (X ≤ F−1
X (y)) if y ∈ [0, 1)

1 if y ≥ 1

=





0 if y < 0

FX(F−1
X (y)) if y ∈ [0, 1)

1 if y ≥ 1

=





0 if y < 0

y if y ∈ [0, 1)

1 if y ≥ 1.

The p.d.f. of Y is therefore

fY (y) = 1[0,1](y),

i.e. Y ∼ Uniform(0, 1).

The method of the change of variable

In order to apply the method of the change of variable, the function g must
be strictly increasing continuously differentiable and it must also admit an
inverse g−1 (this is not required by the method based on the c.d.f.). A
sufficient condition is that g is strictly monotone (increasing or decreasing).

Suppose that you are given X ∼ FX and you want to compute the
probability distribution of Y = g(X). First of all, determine the support of
Y . Then, use this formula to obtain fY on the support of Y from fX and g:

fY (y) = fX(g−1(y))

∣∣∣∣∣
d

dz
g−1(z)

∣∣∣∣
z=y

∣∣∣∣∣ .

Exercise in class:
Consider X ∼ Beta(1, 2) and g(x) = 2x−1. What is the p.d.f. of Y = g(X)?

First of all, notice that (with a little abuse of notation) supp(Y ) =
g(supp(X)). Since supp(X) = [0, 1], it follows that supp(Y ) = [−1, 1].

We have
fX(x) = 2(1− x)1[0,1](x),

g−1(y) =
y+1

2
,

and
d

dx
g−1(x) =

1

2
.
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Thus, for y ∈ [−1, 1],

fY (y) = fX(g−1(y))

∣∣∣∣∣
d

dx
g−1(x)

∣∣∣∣
x=y

∣∣∣∣∣

= 2

(
1− y+1

2

) ∣∣∣∣
1

2

∣∣∣∣ = 1− y+1

2
=

1− y
2

.

The complete description of the p.d.f. of Y is therefore

fY (y) =
1− y

2
1[−1,1](y).

Other exercises in class:
• X ∼ Exp(λ) and Y = 3X + 1. Find the pdf of Y and E[Y ].
• X ∼ Gamma(α, β). Prove that cX ∼ Gamma(α, cβ) where β is the scale
parameter.

Inverse transform method

Sometimes it is useful to simulate X1, . . . , Xn
iid∼ FX . However, this would

require the knowledge and developments of methods to simulate from every
distribution FX , which would be unbelievably expensive. Instead, there is a
simple way to do it. It is called the inverse transform method. We will only
see the case of continuous distributions; for the discrete case, the sampling
strategy is analogous and one needs to take into account the partitioned
space.

The method is fairly simple and it is based on the results about the
transformations of random variables that we have already studied. Let
U ∼ Uniform(0, 1), and FX any strictly increasing cumulative distribution
function (cdf) admitting inverse. Let X be the transformation of U through
F−1
X , that is X = F−1

X (U). We would like to show that the equality X ∼ FX .
Notice that

FU (FX(x))P (U ≤ FX(x)) = FX(x) ∀x s.t. FX(x) ∈ [0, 1]s

as already shown for the uniform distribution. Now, the event {U ≤ FX(x)}
occurs if and only if the event {F−1

X (U) ≤ F−1
X (FX(x))} occurs. This is

thanks to the strict monotonicity condition on FX . Moreover, the latter
event is equivalent to {F−1

X (U) ≤ x}, again due to this condition. Therefore
we can finally conclude that

P (X ≤ x) = P (F−1
X (U) ≤ x) = FU (FX(x)) = FX(x).
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This means that X ∼ FX . In other words, now we know how to gener-
ate every random variable just knowing (1) its inverse cdf and (2) how to
sample form the uniform distribution. The theory behind random number
generation (RNG) is wide, and here we have only touched the surface.

The requirement for the cdf to be monotonic and have a closed-form
inverse is not always satisfied. The monotonicity requirement can be easily
relaxed. The proof is the same once we define

F−1(u) = inf{x : FX(x) ≥ u} ∀0 < u < 1.

Regarding the sample problem, recall, for instance, that the cdf of the nor-
mal distribution does not have a closed-form form. Typically approximate
methods are developed.

Exercises in class:
• Let FX(x) = 1−e−

√
x for x ∈ [0,∞). Find the transformation g such that

X = g(U) where X ∼ FX and U ∼ Uniform(0, 1).
In other words, we want to find F−1

X since we know that P (F−1(U) ≤ x) =
FX(x) thanks to the previous result. Let’s find it. Then

FX(x) = 1− e−
√
x ⇐⇒ x = [log(1− FX(x))]2

therefore, taking F (x) = u,

g(u) = F−1(u) = [log(1− u)]2 .

• Let FX(x) = 1− e−λx for x ∈ [0,∞) and λ > 0. Find the transformation
g such that X = g(U) where X ∼ FX and U ∼ Uniform(0, 1).
Here, similarly as in the example above, we need to have F (F−1(u)) = u,
therefore

1− e−λF−1(u) = u ⇐⇒ F−1(u) = − 1

λ
log(1− u).

therefore g(U) = F−1(U) = 1
λ log(1− U).
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Lecture 12

Recommended readings: WMS, sections 8.1-8.3, 9.7, Cosma Shal-
izi’s 36-401 lecture notes

Estimation

What to do when you don’t know λ = 5?

The concepts and framework of probability theory covered so far has proven
useful in calculating theoretical (‘ideal’) long run frequency properties of
random events. The problem settings so far have always included a known
probability distribution of the random variable of interest – for instance, the
number of people entering a coffeeshop was simply given as 5 people an hour,
on average. This led us to use a Poisson random variable X ∼ Poisson(λ =
5) to calculate an event like P (5 ≤ X ≤ 20), by summing the probability
mass function in the appropriate region. Of course, we don’t have perfect
information that says the truth of this process is λ = 5, in practice.

Data as realization of random variables.

Data Instead of having the perfect information that λ = 5, as a practi-
tioner and probabilistic modeler, you will have data about the arrivals in
a coffee shop, over several days. If you are modeling gambling probabili-
ties involving unfair coin flips (Binomial(n, p)) or unevenly shaped dice rolls
(X ∼ Multinomial(p1, · · · , p6, n), then you will have data about the out-
comes of coin flips or dice rolls. The goal of estimation is to recover the
statistical parameters from observed data, by calculating statistics from the
data (make inference). Indeed, Statistics are just functions of the data. Here
is an example of the typical setting in which you will be asked to estimate
a parameter. You have observed n dice rolls The data will look like this:

Draw 1 2 3 · · · n

Outcome 0 1 1 · · · 0

We will call the outcome of each draw random variables (in upper case):

X1, · · · , Xn

Each data in the table above is a realization of random variables Xi; we can
write this as X1 = x1, X2 = x2, · · · , Xn = xn for the particular outcome
(x1, · · · , xn).
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Statistical Model The statistical model (interchangeably used are: prob-
abilistic model, or data model) is what we assume (impose) about the nature
of randomness of the data. In other words, it is what we impose as the type
of randomness that X1, · · · , Xn follow. A sensible model in this example is

X1, X2, · · · , Xn
iid∼ Bernoulli(p)

Under this assumption, the number of heads X =
∑n

i=1Xi is distributed as
X ∼ Binomial(n, p). We will write X = (X1, · · · , Xn) and x = (x1, · · · , xn)
sometimes.

Estimation Lastly, the estimation of the parameter p is done by:

p̂ = g(X1, · · · , Xn) =
1

n
(
n∑

i=1

Xi).

The ·̂ notation is used to emphasize the p̂ is aimed at learning about the
value of p. The estimate p̂ is sometimes written p̂(X) to emphasize that it
is a function of the data! Also, p̂ is a good estimate of the parameter p if it
is close to it.

How do you find a good function g of the data whose function value
provides a good estimate of p? This is a core matter of interest in statistical
modeling, and further studies in statistics and machine learning attempt to
answer this question using cool mathematical and algorithmic insights. We
will get a flavor to one such technique in this class.

Maximum likelihood estimation One way of finding a good g is to
think about the ‘likelihood’ of the data, given my statistical model. If your
model parameter is p = 0.8, and your data is mostly zero – let us say
that 95 percent of them were zero, then it is quite unlikely that they are
realizations from the statistical model of X1, · · · , Xn ∼ Bernoulli(0.8) – this
model (which is completely determined by p) is quite implausible. What
about p = 0.5? If the data is mostly zero, then, Bernoulli(p = 0.5) is still
not quite plausible, but it is more likely than before that mostly zero draws
came from it.

We can continue this guessing game of finding the most plausible es-
timate of p, or we can take a more principled route. Write the likelihood
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function of the data, given the model

L(p|x) = fX(x|p) (51)

= P (X = x|p) (52)

= P (X1 · · · = x1, · · · , Xn = xn|p) (53)

=

n∏

i=1

pXi(xi) (54)

= p
∑n
i=1Xi(1− p)n−

∑n
i=1Xi (55)

where pXi(·) are the probability mass function of Xi ∼ Bernoulli(p). For
our purposes, the likelihood function is the joint probability of x. We would
like to find the value p that maximizes the joint probability (likelihood) for
the data on hand, x1, · · · , xn. The value of p is what is called the maximum
likelihood estimator (MLE) of the parameter of interest (p):

p̂MLE = argmaxpL(p|x)

How would you maximize (51)? Since this is a polynomial function in p, we
can use differentiation to find the ‘zeros’ of this function – this is because we
recall from calculus that in order to maximize a polynomial, a good strategy
is to take the derivative and set it equal to zero (and some other steps such
as checking concavity/convexity..).

Exercise in class

• Obtain the maximum likelihood estimator for the parameter p of a
Bernoulli random variable (the above setting). (Hint: maximizing a
function g(x) is the same as maximizing log (g(x)).)

Bias The bias of an estimator is the difference between the expectation of
p̂ and the actual parameter:

bias = E(p̂(X))− p.

One salient quality of a statistical estimator p̂ is for the expectation (mean)
of p̂ to be equal to p! So that on average, p̂ is not consistently misled in its
mean – that the bias is zero. This quality of an estimator is called unbiased-
ness, and such an estimator is called an unbiased estimator.

Exercise in class
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• In the above Bernoulli data example, what is the bias of the estimator
p̂ = X̄?

• Is p̂ = X̄ unbiased?

What is an example of a biased estimate? Take a Normal data model,
where Xi ∼ N (0, σ2). We would like to estimate the variance (noise level)
σ2. We will show that the MLE of the σ̂2.
Derivation of σ̂2

MLE goes here:

∂

∂σ2

n∑

i=1

[−1

2
log 2πσ2 − x2

i

2σ2
] =

n

2σ2
+

n∑

i=1

x2
i

2σ4
= 0

=⇒ σ̂2 =
1

n

n∑

i=1

x2
i .

Exercise in class

• Obtain the maximum likelihood estimator for the parameter λ of a
Poisson random variable. What is E(λ̂MLE − λ)?

• Obtain the maximum likelihood estimator for the parameter λ of an
Exponential random variable. What is E(λ̂MLE − λ)?
Remember that in general E[1/X] 6= 1/E[X]!!!

(note, the subscript MLE is sometimes written to emphasize that it is a
maximum likelihood estimate)

Here is a summarizing table distinguishing parameters and statistics:

µ µ̂

Where does it come from? Underlying truth Data
What is it? The goal of estimation Function of data

What is it a function of? Population Sample
What is it called? Parameter Statistic

For example, it is called True mean Sample mean
Is it random? Constant value Random variable

Example p = 0.6 p̂ = g(Y1, · · · , Yn) = Ȳ
Example µ = 3.54 µ̂ = g(X1, · · · , Xn) = X̄ = 1

n

∑n
i=1Xi
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Invariance Property of MLEs Maximum likelihood estimators have a
convenient property of being invariant to transformation by a function g.
Formally, if θ̂MLE is an MLE of θ, and g is some real valued function, then
g(θ̂MLE) is a maximum likelihood estimator for τ = g(θ).

Let’s start with the case of g being a one-to-one function, that is every
value of τ corresponds to at most one value of θ. In this case

L∗(τ |x) =

n∏

i=1

fX(xi; g
−1(τ)) = L(g−1(τ)|x).

Then
sup
τ
L∗(τ |x) = sup

τ
L(g−1(τ)|x) = sup

θ
L(θ|x).

If g is not a one-to-one function, there may be multiple value of θ that
correspond to the same value of τ . This is a problem since maximizing L∗
does not correspond anymore to maximizing L. However, we can overcome
this problem by defining the induced likelihood function:

L∗(τ |x) = sup
{θ:g(θ)=τ}

L(θ|x).

For instance, we are ruling out the cases of θ̂ being the MLE of L, but both
θ̂ and θ′ corresponding to g(θ̂) = g(θ′) = τ . Then we have

L∗(τ |x) = sup
τ

sup
{θ:g(θ)=τ}

L(θ|x)

= sup
θ
L(θ|x) = L(θ̂|x)

= sup
{θ:g(θ)=g(θ̂)}

L(θ|x) = L∗(g(θ̂)|x)

and the proof is now complete.
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Lecture 13

Recommended readings: WMS, sections 7.1 → 7.4

The Empirical Rule, Sampling Distributions, the Central Limit
Theorem, and the Delta Method

In this lecture we will focus on some basic statistical concepts at the basis
of statistical inference. Before starting, let’s quickly discuss a useful rule of
thumb associated to the Normal distribution which is often mentioned and
used in practice.

The Empirical Rule Based on the Normal Distribution

Suppose that you collect data X1, . . . , Xn ∼ f where f is an unknown prob-
ability density function which, however, you know is ‘bell-shaped’ (or you
expect to be ‘bell-shaped’ given the information you have on the particular
phenomenon you are observing, or you can show to ‘bell-shaped’ using, for
example, an histogram).

Example of histograms and density estimation goes here:

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5

We know that we can estimate the mean µf and the standard deviation
σf of f by means of the sample mean and the sample standard deviation
X̄ and S, respectively. On the basis of these two statistics, you may be
interested in approximately quantifying the probability content of intervals
of the form [µf − kσf , µf + kσf ] where k is a positive integer. Because for
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X ∼ N (µ, σ2) one has

P (µ− σ ≤ X ≤ µ+ σ) ≈ 68%

P (µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 95%

P (µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 99%,

one would expect that, based on X̄ and S,

P ([X̄ − S, X̄ + S]) ≈ P ([µf − σf , µf + σf ]) ≈ 68%

P ([X̄ − 2S, X̄ + 2S]) ≈ P ([µf − 2σf , µf + 2σf ]) ≈ 95%

P ([X̄ − 3S, X̄ + 3S]) ≈ P ([µf − 3σf , µf + 3σf ]) ≈ 99%

(56)

if the probability density f is ‘bell-shaped’. The approximations of equation
(56) are frequently referred to as the empirical rules based on the Normal
distribution.

Sampling Distributions

To illustrate the concept of sampling distribution, we will consider the Nor-

mal model, which assumes that the data X1, . . . , Xn
i.i.d.∼ N (µ, σ2) are i.i.d.

with a Normal distribution with parameters µ and σ2 that are usually as-
sumed to be unknown. In order to estimate µ and σ2, we saw that we can
use the two statistics X̄ and S2 (the sample mean and the sample variance).
These statistics, or estimators, are random variables too, since they depend
on the data X1, . . . , Xn. If they are random variables, then they must have
their own probability distributions! The probability distribution of a statis-
tic (or an appropriate stabilizing transformation of it) is called the sampling
distribution of that statistic. We have the following results:

1.
√
n(X̄−µ)
σ ∼ N (0, 1)

2. (n−1)S2

σ2 ∼ χ2(n− 1)

3.
√
n(X̄−µ)
S ∼ t(n− 1).

Some comments: 1. is easy to understand and prove (it’s just standardiza-
tion of a Normal random variable!). 1. is useful when we are interested in
making inferences about µ and we know σ2. 2. is a little harder to prove.
We use this result when we are interested in making inferences about σ2 and
µ is unknown. 3. is a classical result. It is useful when we want to make
inferences on µ and σ2 is unknown. We won’t study in detail the t distribu-
tion. However, this distribution arises when we take the ratio of a standard
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Normal distribution and the square root of a χ2 distribution divided by its
degrees of freedom (under the assumption that the Normal and the χ2 dis-
tributed random variables are also independent). The t distribution looks
like a Normal distribution with ‘fatter’ tails. As the number of degrees of
freedom of the t distribution goes to ∞, the t distribution ‘converges in
distribution’ to a standard Normal distribution.

For the purposes of this course, we say that a sequence of random vari-
ables X1, X2, . . . Xn, . . . converges in distribution to a certain distribution
F if their c.d.f.’s F1, F2, . . . , Fn, . . . are such that

lim
n→∞

Fn(x) = F (x)

for each x ∈ R at which F is continuous. We will use the notation
d→

to denote convergence in distribution. The idea here is that the limiting
c.d.f. F (often called the limiting distribution of the X’s) can be used to
approximate probability statements about the random variables in the se-
quence. This idea will be key to the next result, the Central Limit Theorem.

The Central Limit Theorem

The Central Limit Theorem is a remarkable result. Simply put, suppose that

you have a sequence of random variables X1, X2, . . . , Xn, . . .
iid∼ F distributed

according to some c.d.f. F , such that their expectation µ and their variance
σ2 exist and are finite. Then, the standardized version of their average
converges in distribution to a standard Normal distribution.

In other words, √
n(X̄n − µ)

σ

d→ Z (57)

as n → ∞, where Z ∼ N (0, 1). Another way to express the Central Limit
Theorem is to say that, for any x ∈ R,

lim
n→∞

P

(√
n(X̄n − µ)

σ
≤ x

)
→ Φ(x). (58)

This result is extremely frequently used and invoked to approximate prob-
ability statements regarding the average of a collection of i.i.d. random
variables when n is ‘large’. However, rarely the population variance σ2 is
known. The Central Limit Theorem can be extended to accomodate this
case. We have √

n(X̄n − µ)

S

d→ Z (59)
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where Z ∼ N (0, 1). Its typical proof involves characteristic functions, that
we will study in a few classes.

Exercise in class:
The number of errors per computer program has a Poisson distribution with
mean λ = 5. We receive n = 125 programs written by n = 125 different
programmers. Let X1, . . . , Xn denote the number of errors in each of the

n programs. Then X1, . . . , Xn
iid∼ Poisson(λ). We want to approximate the

probability that the average number of errors per program is not larger than
5.5.

We have µ = E(X1) = λ and σ =
√
V (X1) =

√
λ. Furthermore,

P (X̄n ≤ 5.5) = P

(√
n(X̄n − µ)

σ
≤
√
n(5.5− µ)

σ

)

≈ P
(
Z ≤

√
125(5.5− 5)√

5

)
= P (Z ≤ 2.5)

= Φ(2.5)

where Z ∼ N (0, 1).

The Delta Method

If we have a sequence of random variables X1, X2, . . . , Xn, . . . which con-
verges in distribution to a standard Normal and a differentiable function
g : R→ R, then the Delta Method allows us to find the limiting distribution
for the sequence of random variables g(X1), g(X2), . . . , g(Xn), . . . . Assume
that √

n(X̄n − µ)

σ

d→ N (0, 1)

and that g : R→ R is differentiable with g′(µ) 6= 0. Then,

√
n(g(Xn)− g(µ))

|g′(µ)|σ
d→ N (0, 1).

Exercise in class:
Let X1, . . . , Xn

iid∼ F where F is some c.d.f. such that both the expectation
µ and the variance σ2 of the X’s exist and are finite. By the Central Limit
Theorem, √

n(X̄n − µ)

σ

d→ N (0, 1).
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Consider the function g(x) = ex. Find the limiting distribution of g(X̄n).
We have g′(x) = g(x) = ex > 0 for any x ∈ R; thus, g(µ) 6= 0 necessarily.

By applying the Delta Method, we have that

√
n[g(X̄n)− g(µ)]

|g′(µ)|σ =

√
n
(
eX̄n − eµ

)

eµσ

d→ N (0, 1).

Thus, we can use the distribution

N
(
eµ,

e2µσ2

n

)
.

to approximate probability statements about g(X̄n) = eX̄n when n is ‘large’.

The Law of Large Numbers

We have so far studied the Central Limit Theorem and a particular mode of
convergence, the convergence in distribution. Another important result on
the convergence of the average of a sequence of random variables is the law of
large numbers7. Simply put, the law of large numbers says that the sample
mean of a sequence of i.i.d. random variables converges to the common
expectation of the random variables in the sequence. More precisely, let
X1, . . . , Xn, . . . be a sequence of iid random variables with common mean
µ. Then, for any ε > 0,

lim
n→∞

P (|X̄n − µ| > ε) = 0. (60)

In this case, we use the notation X̄n
p→ µ.

Example in class:
Suppose that you repeatedly flip a coin which has probability p ∈ (0, 1) of
showing head. Introduce the random variables

Xi =

{
1, if the i-th flip is head

0, if the i-th flip is tails.

Consider the random variable X̄n describing the observed proportion of
heads. Then, as n → ∞, X̄n

p→ µ. In English, this means that for any

7This is also called the (weak) law of large numbers; the stronger version exists, but
we do not discuss this in this course.
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arbitrarily small ε > 0, the probability of the event ‘the proportion of heads
differs from p by more than ε’ converges to 0 as n→∞. Let’s prove it. By
the central limit theorem, we know that

X̄ ∼ N (µ, µ(1− µ)/n)

therefore, for any ε > 0,

P (|X̄n − µ| > ε) = 1− P (−ε ≤ X̄n − µ ≤ ε)

= 1− P
(
− ε

√
n√

µ(1− µ)
≤ Z ≤ ε

√
n√

µ(1− µ)

)

= 1− φ
(

ε
√
n√

µ(1− µ)

)
+ φ

(
− ε

√
n√

µ(1− µ)

)
n→∞−→ 0

Summary: two ways in which Random Variables converge.

We introduced two notions of convergence for random variables: convergence
in distribution (which we associated to the Central Limit Theorem) and con-
vergence in probability (which we associated to the weak law of large num-
bers). There are other ways of convergence of random variables, all of which
have the common goal: What does the distribution of Yn = f(X1, · · · , Xn)
look like as we collect more and more samples? (n → ∞)? These results
allow us to understand the precision or accuracy in which our statistics (es-
timators, necessarily functions of the data) estimate some unknown quantity
(usually a parameter). For further study, read a good probability textbook
or consider taking a graduate class!

(a) Convergence of X̄n. (b) Convergence of 1
n−1

∑n
i=1(Xi− X̄n)2.

Figure 2: Convergence of cumulative sample mean and sample variance of
Bernoulli trials as a function of n.
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Figure 3: Histogram (counts) of the values taken by
√
n(X̄n − µ)/σ for

Bernoulli trials with µ = 0.5, and consequently variance σ2 = µ(1−µ). Each

value is computed with 104 Bernoulli trials. As you see,
√
n(X̄n − µ)/σ

d→
N (0, 1).
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Lecture 14

Recommended readings: WMS, sections 3.9, 4.9, 6.5

Moments

Remember how we learned that a CDF or a PDF/PMF completely charac-
terizes the distribution of a random variable – in other words, it contains
all you need to know about the law of randomness of that random variable.
If two random variables (from different origins, or sampling procedure) give
the same CDF, then they have the same distribution.

What is a moment of F? In mathematics/statistics/mechanics, a moment
is a specific quantitative measure of the shape of a set of points. (For simplic-
ity, think of such points as potential realizations random variables.) Would
you agree that, if you have a set of points, and you knew (1) the center of
balance (2) how spread out they are, then you already have a pretty good
rough idea of the distribution of variables? (1) corresponds to the first mo-
ment (and the mean). The spread (variance) is the second moment minus
the square of the first moment. The story goes on – what if you knew which
side of the mean the points are more populated/concentrated in? This is
given by the third moment, plus some multiples of the first and second
moment.

Would you agree that, as you go further and learn more such informa-
tion about the shape of the points, that you learn more about the exact
distribution of the random variables? Indeed, knowing all the moments is
equivalent to knowing the CDF (from which we know all we need to know
about the distribution)!

In this lecture, we introduce a particular function associated to a proba-
bility distribution F which uniquely characterizes F . This function is called
the moment-generating function (henceforth shortened to m.g.f.) of F be-
cause, if it exists, it allows to easily compute any moment of F , i.e. any
expectation of the type E(Xk) with k ∈ {0, 1, . . . } for X ∼ F .

Moment generating functions

There are other functions that are similar to the m.g.f.s which we will not
discuss in this course: these include the probability-generating function for
discrete probability distributions (which is a compact power series represen-
tation of the p.m.f.), the characteristic function (which is the inverse Fourier
transform of a p.m.f./p.d.f. and always exists) and the cumulant-generating
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function (which is the logarithm of the m.g.f.).
The moments {E(Xk)}∞k=1 associated to a distribution X ∼ F com-

pletely characterize F (if they exist). They can all be encapsulated in the
m.g.f.

mX(t) = E(etX) =

{∫
supp(X) e

txfX(x) dx if X is continuous
∑

supp(X) e
txpX(x) if X is discrete.

If two random variables X and Y are such that mX = mY then their c.d.f.’s
FX and FY are equal at almost all points (i.e. they can differ at at most
countably many points). If you are interested in the proof, I suggest you to
look it up in more advanced books.

We say that the moment generating function mX of X ∼ F exists if
there exists an open neighborhood around t = 0 in which mX(t) is finite.
8Note that it is always true that, for X ∼ F with an arbitrary distribution
F , mX(0) = 1.

The name of this function comes from the following feature: suppose
that mX exists, then for any k ∈ {0, 1, . . . }

dk

dtk
mX(t)

∣∣∣∣
t=0

= E(Xk). (61)

This means that we can ‘generate’ the moments of X ∼ F from mX by
differentiating mX and evaluating its derivatives at t = 0. This is more
clear if we rewrite the m.g.f. in terms of its series expansion: ∀t ∈ R

E[etX ] = E

[
1 + tX +

t2X2

2!
+
t3X3

3!
+ · · ·+ tnXn

n!
+ . . .

]

= 1 + tE[X] +
t2E[X2]

2!
+
t3E[X3]

3!
+ · · ·+ tnE[Xn]

n!
+ . . .

Exercise in class:
Show that the m.g.f. of X ∼ Binomial(n, p) is

mX(t) = [pet + 1− p]n

and use it to compute V (X). Let’s see how.

mX(t) =

n∑

x=0

etxpX(x) =

n∑

x=0

etx
(
n

x

)
px(1− p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1− p)n−x = [pet + (1− p)]n

8For instance, the mgf of a Cauchy distribution does not exists.
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where we used the binomial theorem

(a+ b)n =

n∑

i=0

(
n

i

)
aibn−i.

Notice that the function above is well-defined and finite for any t ∈ R. Then,

E(X) =
d

dt
mX(t)

∣∣∣∣
t=0

= npet[pet + (1− p)]n−1
∣∣
t=0

= np

and

E(X2) =
d2

dt2
mX(t)

∣∣∣∣
t=0

= np2e2t(n− 1)[pet + (1− p)]n−2 + npet[pet + (1− p)]n−1
∣∣
t=0

= np2(n− 1) + np.

Thus,

V (X) = E(X2)−[E(X)]2 = np2(n−1)+np−n2p2 = −np2+np = np(1−p).
Exercise in class:
Show that the m.g.f. of X ∼ Uniform(0, 1) is

mX(t) =
1

t
(et − 1).

We have

mX(t) =

∫ 1

0
etx dx =

1

t
etx
∣∣∣∣
1

0

=
1

t
(et − 1)

which is well-defined and finite for any t ∈ R (recall that mX(0) = 1 for any
X).

It is easy to verify that a m.g.f. mX satisfies

maX+b(t) = ebtmX(at). (62)

M.g.f.’s also provide a tool which is often useful to identify the distribu-
tion of a linear combination of random variables. In the m.g.f. world sums
becomes products! In particular, consider a collection of n independent ran-
dom variables X1, . . . , Xn with m.g.f’s mX1 , . . . ,mXn . It is easy to check
from the definition of m.g.f. that, if we consider Y =

∑n
i=1(aiXi + bi), then

mY (t) = e
∑n
i=1 bit

n∏

i=1

mXi(ait). (63)

Exercise in class:
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1. What is the mgf of X ∼ Poisson(λ)?

mX(t) = eλ(et−1)

for t ∈ R.

2. Consider Y ∼ Poisson(µ) with X and Y independent. What is the
distribution of X + Y ?

Since X and Y are independent, we have

mX+Y (t) = mX(t)mY (t) = eλ(et−1)eµ(et−1) = e(λ+µ)(et−1)

and we recognize this as the m.g.f. of a Poisson(λ+ µ) distribution.

Why are moment generating functions useful?
First, for X and Y whose moment generating functions are finite, mX(t) =
mY (t) for all t if and only if P (X ≤ x) = P (Y ≤ x) for all x.

We will briefly prove this, for discrete distributions X and Y . One
direction is trivial; if the two have the same distribution, then of course

mX(t) = E(etX) = E(etY ) = mY (t)

is true. The other direction is harder. Call A = supp(X) ∪ supp(Y ), and
a1, · · · , an the elements of A. Then, the mgf of X is

mX(t) = E(eTX)

=
∑

x∈supp(X)

etx · pX(x)

=
∑

i=1··· ,n
etai · pX(ai)

and likewise, mY (t) =
∑

i=1,··· ,n e
tai · pX(ai). Subtract the two, to get

mX(t)−mY (t) =
∑

i=··· ,n
etai · [pX(ai)− pY (ai)] = 0

must be true when t is close to zero (because it is true for all t). If t is close
to zero, then no matter what ai is, etai must be close to 1. So, it must be
the case that

pX(ai) = pY (ai)

85



for all i; hence, the pmfs are the same, and the distributions are the same.

Second, if mXn(t) → mX(t) for all t, and P (X ≤ x) is continuous in x,
then P (Xn ≤ x) → P (X ≤ x). You can prove the central limit theorem
with moment generating functions, assuming the moments are finite. (This
proof is in the homework.)
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Lecture 15

Recommended readings: Ross, sections 5.3.1 → 5.3.3

Introduction to Random Processes

Consider a collection of random variables

X = {Xt}t∈T

defined on a sample space Ω endowed with a probability measure P , where
the collection is indexed by a parameter t taking values in the set T . Such
a collection is commonly referred to as a random process or as a stochastic
process.

It suffices to think about t as ‘time’ 9, and T to be the domain of time
(for example, [0,∞)). Recall that a random variable is a function mapping
the sample space Ω into a subset S of the real numbers. The set S is usually
called the state space of the random process X. In fact, if at the time t ∈ T
the random variable Xt takes the value Xt = xt ∈ S, we say that the state
of the random process X at time t is xt.

Based on the features of the sets T and the sets S we say that X is a

• discrete-time random process, if T is a discrete set 10

• continuous-time random process, if T is not a discrete set
• discrete-state random process, if S is a discrete set
• continuous-state random process, if S is a not a discrete set.

It is clear from above that X = {Xt}t∈T is a function or mapping of both
the elements of ω ∈ Ω and of the time parameter t.

X : Ω× T → S
(ω, t) 7→ Xt(ω)

We can therefore think of X in at least two ways:

• as a collection of random variables Xt taking values in S; i.e. for any
fixed time t, the random process X corresponds to a random variable
Xt valued in S

9t can be more generally thought of as time or space (we call this a ‘spatial process’,
or just any indexing that keeps track of the evolution of the random variable.

10 i.e. T is finite or countably infinite
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• as the collection of random functions of time (‘trajectories’); i.e. for
any fixed ω ∈ Ω, we can view X as the sample path or ‘trajectory’
t 7→ Xt(ω) which is a (random) function of time.
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Figure 4: Sample path of Xt for three different ω’s, that is for
Xt(ω1), Xt(ω2), Xt(ω3).

In contrast to the study of a single random variable or to the study of
a collection of independent random variables, the analysis of a random pro-
cess puts much more focus on the dependence structure between the random
variables in the process at different times and on the implications of that
dependence structure.

I think that by now you might be confused with high probability. For this
reason, let’s see a few examples of stochastic processes.

• Any single random variable is a stochastic process. For instance,
X ∼Poisson(5) is a stochastic process.

• Let X = {Xi}i∈T and let T = {1, 2}. Then we can consider a coin toss,
that is the sample space will be Ω = {(H,H), (H,T ), (T,H), (T, T )}.
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Call ωti the element in the t − th position of the i − th element of Ω.
For instance, ω1

2 = H. We endow Ω with a probability measure P
such that P (ωi) = 1/4 ∀i{1, 2, 3, 4}. Then define the random variable
Xt(ω) = 1({ωt is H}) if ωi for t = 1, 2. Clearly, for fixed t ∈ T , Xt(ω)
is a Bernoulli random variables. For fixed ω, Xt is a function of t, and
there are four (|Ω|) possible trajectories.

Because there are many real-world phenomena that can be interpreted
and modeled as random processes, there is a wide variety of random pro-
cesses. In this class, however, we will focus only on the following processes:

1. Bernoulli process: discrete-time and discrete-state,
2. Poisson process: continuous-time and discrete-state,
3. Brownian motion (the Wiener process): continuous-time and continuous-

state,
4. Discrete-time Markov chains: discrete-time and any state.

The Bernoulli Process and the Poisson Process

In lecture (and in-class examples), we will define Bernoulli and Poisson pro-
cesses and their useful properties. Then, in the homework problems, you
will learn further aspects and how to apply them to several settings, and
calculate/identify useful quantities.

The Bernoulli Process

Let X = {Xi}∞i=1 be a sequence of iid Bernoulli(p) random variables. The
random process X is called a Bernoulli process.
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Figure 5: Sample path for a Bernoulli process with p = 0.3. Horizontal and
vertical axes represent time and value of the process respectively.
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The Bernoulli process can be thought of as an arrival process: at each
time i either there is an arrival (i.e. Xi = 1, or equivalently stated, we
observe a success) or there is not an arrival (i.e. Xi = 0, or equivalently
stated, we observe a failure). Many of the properties of a Bernoulli process
are already known to us from previous discussions.

Some interesting questions:

• Consider n distinct times; what is the probability distribution of the
number of arrivals in those n times? This is clearly binomially dis-
tributed with parameters n and p!

• What is the probability distiribution of the first arrival? This even
follows a geometric distribution with parameter p.

• Finally, consider the time needed until the r-th arrival (r ∈ {1, 2, . . . });
what is the probability distribution associated to the time of the r-th
arrival? Here we need the negative binomial distribution.

The independence of the random variables in the Bernoulli process has
an important implication about the process. Consider a Bernoulli process
X = {Xi}∞i=1 and the process X−n = {Xi}∞i=n+1. Because the random vari-
ables in X−n are independent of the random variables in X \X−n, it follows
that X−n is itself a Bernoulli process (starting at time n) which does not
depend on the initial n random variables of X. We say that the Bernoulli
process thus satisfies the fresh-start property.

Recall the memoryless property of the Geometric distribution. How do you
interpret this property in light of the fresh-start property of the Bernoulli
process?

The Poisson Process

Motivation: Poisson process is one of the most important models used in
queueing theory. The arrival process of customers is well modeled by a Pois-
son process. In teletraffic theory the “customers” may be calls or packets.
Poisson process is a viable model when the calls or packets originate from
a large population of independent users. In the following it is instructive to
think that the Poisson process we consider represents discrete arrivals (of
e.g. calls or packets).
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Figure 6: Sample path for a Poisson process with λ = 2.

A random process X = {Xt}t∈T is called a counting process if Xt repre-
sents the number of events that occur by time t. More properly, if X is a
counting process, it must also satisfy the following intuitive properties:

• for any t ∈ T , Xt ∈ Z+;

• for s ≤ t, Xt−Xs is the number of events occurring in the time interval
(s, t]. Consequently, Xs ≤ Xt.

A counting process X is said to have independent increments if the num-
ber of events occurring in disjoint time intervals are independent. This
means that the random variables Xt − Xs and Xv − Xu are independent
whenever (s, t] ∩ (u, v] = ∅.

Furthermore, a counting process X is said to have stationary increments
if the distribution of the number of events that occur in a time interval only
depends on the length of the time interval. This means that the random
variables Xt+s −Xs have the same distribution for all s ∈ T .

For instance, consider a Bernoulli process X = {Xi}∞i=1 and the process
Y = {Yi}∞i=1 with Yi =

∑
j≤iXj . Then Y is a discrete-time counting process

with independent and stationary increments.

Let’s now see three equivalent definitions of random processes.

1. homogeneous Poisson process. A counting process X = {Xt}t≥0 is said
to be a homogeneous Poisson process with rate λ > 0 if

• X0 = 0
• X has independent increments
• the number of events in any time interval of length t > 0 is

Poisson distributed with expectation λt, i.e. for any s, t ≥ 0 we
have Xt+s −Xs ∼ Poisson(λt).
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Consequently, if the parameter λ does not depend on time, then the
Poisson process does have stationary increments. In this class we will
deal only with homogeneous process, that is processes whose rate does
not depend on t, hence we will frequently refer to them simply as
Poisson processes.

2. A pure birth process (Yule process) is a stochastic process for which
in an infinitesimal dt time interval, there is only one arrival, and this
happens with λdt, independent of arrivals outside of the interval.

3. A stochastic process whose inter-arrival times follow an exponential(λ)
distribution.

Notice, in all of these definitions, there is no restriction that t must take
values in some discrete set – so this is a continuous-time random process.

It is interesting to prove the equivalence of the three definitions. Let’s
see it.

1 → 2: First, definition 1 says:

P (Xt = x) =
(λt)x

x!
e−λt

In order not to burden the notation, let h := dt. Then, consider these
three outcomes of Xdt:

1. P (Xdt = 0) = e−λ·dt = e−λ·dt = 1− λ · dt+ o(dt) = 1− λh+ o(h)
where the second equality follows from the Maclaurin series11 of
the exponential function.

2. P (Xdt = 1) = λdt
1! e
−λ·dt = λ · dt− λ2(dt)2 + · · · = λh+ o(h)

3. This is a little bit more tricky.

P (Xdt ≥ 2) = e−λh
∑

x≥2

(λh)x

x!
= e−λh(e−λh − 1− λh)

= 1− e−λh − λhe−λh

Now, substituting from above,

= 1− 1 + λh+ o(h)− λh+ o(h) = o(h).

In the proof we have used the “little o” notation. In general we
say that an = o(bn) where an and bn, where bn is nonzero, are
two sequences if limn→∞

an
bn

= 0.
11The Maclaurin series is just a Taylor expansion centred at 0.
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1 → 3: Denote Y = time between two arrivals. Then, notice the clever fact
that

{Y > t} ≡ {Xt = 0}
Now, take the probability of these two events and equate them:

P ({Y > t}) = P ({Xt = 0}) = e−λt

and further manipulate this to get the CDF of Y :

P ({Y ≤ t}) = 1− P (Y > t) = 1− e−λt

which we recognize as an exponential(λ) CDF.

3 → 2: If Y ∼ exp(λ), then,

P (Y ≤ dt) = 1− e−λ·dt

= 1− (1− λdt+ λ2(dt)2 − · · · )
= λdt+ o(dt)

The last part is exactly the 2nd definition above.

2 → 1: First, we introduce the probability generating function (PGF for short).
A PGF is a convenient representation for discrete random variables
that take values in {0, 1, ·, s}:

G(z) = E[zX ] =
∞∑

x=0

p(x)zx

This is useful because it allows a succinct description of the probability
distribution of P (X = i) via

P (X = i) =
G(k)(0)

k!

where G(k) means the k’th derivative of G with respect to z.

What is the PGF of a Poisson random variable X ∼ Pois(λ)?

GX(z) = E(zX) =
∞∑

x=0

zx
1

x!
e−λλx = e−λ

∞∑

x=0

1

x!
(zλ)x = e−λ(1−z)
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Now, let’s consider the PGF of the counter N0,t := N(0, t) which
counts how many occurrences happen between time 0 and t.

GN0,t(z) = E(zN0,t)

GN0,t+dt
(z) = E(zN0,t+dt) = E(zN0,t+Nt,t+dt) = E(zN0,t)E(zNt,t+dt)

The last expression is the same as

GN0,t(z)× [(1− λdt)z0 + λdtz1] = GN0,t − λ(1− z)GN0,tdt.

This is an ordinary differential equation in t. Although you don’t know
how to solve it, I will tell you that the solution is actually

GN0,t(z) = e−λt(1−z)

that corresponds to the PGF of a Poisson random variable with pa-
rameter λt.

What is definition 2 saying? Now that we’ve examined it a bit more
carefully, we can say that a counting process X = {Xt}t≥0 is a Poisson
process with rate λ > 0 if

1. X0 = 0
2. X has stationary and independent increments
3. P (Xh = 1) = λh+ o(h)
4. P (Xh ≥ 2) = o(h)

Condition 3 in definition 2 says that the probability of observing an arrival
in a small amount of time is roughly proportional to h. Condition 4 says
that it is very unlikely to observe more than an arrival in a short amount of
time.

Although we will not prove the following claim, you might find it useful:
a non-negative random variable has the memoryless property if and only if
it follows the exponential distribution.

So, we know about the probability distribution of the count of arrivals up
to any time in a Poisson process. What about the probability distribution
of the inter-arrival times {Ti}∞i=1. First, define the n’th arrival time (n =
0, 1, · · · ) as:

Y0 = 0, Yn = min{t : Yt = n}
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Then, we define the inter-arrival times as the random variables

Tn = Yn − Yn−1, n = 1, 2, · · ·

As we saw in the proof of definition 3, notice that the event {T1 > t} is
equivalent to the event ‘there are no arrivals in the time interval [0, t], i.e.
{Xt = 0}. Thus,

P (T1 > t) = P (Xt = 0) = e−λt

from which we see that T1 ∼ Exponential(1/λ). Now, what is the distribu-
tion of T2? We have

P (T2 > t|T1 = s) = P (Xt+s −Xs = 0|T1 = s) = P (Xt+s −Xs = 0|Xs −X0 = 1)

= P (Xt+s −Xs = 0) = e−λt

which implies that T2 ∼ Exponential(λ) as well. By using the same argu-
ment, it is easy to see that all the inter-arrival times of a Poisson process
are iid Exponentially distributed random variables with parameter λ.

What is the distribution of the waiting time until the n-th arrival?

P (Tn > t) = 1− P (Tn ≤ t) = 1− P (Xt ≥ n) = 1−
n∑

x=0

(λt)xe−λt

x!
.

A Poisson process is also a Markov process (i.e. it is a random process
that satisfies the (weak) Markov property), as an immediate consequence of
the first definition. In other words, it satisfies

P (Xt = xt|Xu = xu, Xs = xs) = P (Xt = xt|Xs = xs)

for u < s < t. Why?

P (Xt = xt|Xu = xu, Xs = xs)

= P (Xt −Xs = xt − xs|Xs −Xu = xs − xu, Xu = xu)

= P (Xt −Xs = xt − xs) = P (Xt = xt|Xs = xs).

where we used independence of the increments.

The Poisson Process as a Continuous-time Version of the Bernoulli
Process
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Fix an arrival rate λ > 0, some time t > 0, and divide the time interval (0, t]
into n subintervals of length h = t/n. Consider now a Bernoulli process X =
{Xi}ni=1 defined over these time subintervals, where each Xi is a Bernoulli
random variable recording whether there was an arrival in the time interval
((i−1)h, ih]. Imposing the condition of the pure birth process, we have that
the probability p of observing at least one arrival in any of these subintervals
is

p = λh+ o(h) = λ
t

n
+ o

(
1

n

)
.

Thus, the number of subintervals in which we record an arrival has a Binomial(n, p)
distribution with p.m.f.

p(x) =

(
n

x

)(
λ
t

n
+ o

(
1

n

))x(
1− λ t

n
+ o

(
1

n

))n−x
1{0,1,...,n}(x)

Now, let n→∞ or equivalently h→ 0 so that the partition of (0, t] becomes
finer and finer, and we approach the continuous-time regime. Following the
same limit calculations that we did in the Bernoulli approximation to the
Poisson, as n→∞ we have

p(x)→ e−λt
(λt)x

x!
1{0,1,... }(x),

which is the p.m.f. of a Poisson(λt) distribution. Thus, the Poisson process
can be thought of as a continuous-time version of the Bernoulli process.
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Lecture 16

Recommended readings: Ross, sections 5.3.4, 5.3.5, 5.4.1

Splitting, Merging, Further Properties of the Poisson Pro-
cess, the Nonhomogeneous Poisson Process, and the Spatial
Poisson Process

Splitting a Bernoulli Process

Consider a Bernoulli process of parameter p ∈ [0, 1]. Suppose that we keep
any arrival with probability q ∈ [0, 1] or otherwise discard it with probabil-
ity 1 − q. The new process thus obtained is still a Bernoulli process with
parameter pq. This is an example of thinned Bernoulli process. Similarly,
the process obtained by the discarded arrivals is a thinned Bernoulli process
as well (with parameter p(1− q)).

In other terms, define the Bernoulli process with parameter p X =
{Xi}∞i=1 and let Z1, . . . be independent Bernoulli r.v.’s with parameter q.
We are claiming that Z1 = {ZiXi}∞i=1 and Z0 = {(1 − Zi)Xi}∞i=1 are two
Bernoulli processes as well. This is actually true. Indeed, (1)

ZiXi ⊥⊥ ZjXj ∀j 6= i

and (2) XiZi is clearly a Bernoulli random variable with parameter

E[XiZi] = E[Xi]E[Zi] = pq.

Therefore Z1 is a Bernoulli process. The same can be said for the process
Z0.

This can be easily generalized to the case where we split the original
process in more than two subprocesses.
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Merging a Bernoulli Process

Consider two independent Bernoulli processes, one with parameter p and
the other with parameter q. Consider the new process obtained by

Xi =

{
1 if there was an arrival at time i in either process

0 otherwise.

The process thus obtained is a Bernoulli process with parameter p+ q− pq.
This is easily generalized to the case where we merge more than two

independent Bernoulli processes.

Thinning of a Poisson Process

Consider a Poisson process X with rate λ > 0. Suppose that there can be
two different types of arrivals in the process, say type A and type B, and that
each arrival is classified as an arrival of type A with probability p ∈ [0, 1] and
as an arrival of type B with probability 1 − p and that the classification is
fone independently from the rest of the process. Let XA and XB denote the
counting processes associated to arrivals of type A and type B respectively.
Then XA and XB are Poisson processes with parameters λp and λ(1 − p)
respectively. Furthermore, XA and XB are independent processes. The two
processes XA and XB are examples of thinned Poisson processes.

Why is this true? To gain some intuition, in the homework you will
prove that for X ∼ Poisson(λ) and Z1, . . . independent Bernoulli r.v.’s with
parameter p, then

∑X
i=1 Zi ∼ Poisson(λp).

This can be easily generalized to the case where we consider n ≥ 3
different types of arrivals.
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Superposition of two Poisson Processes

Consider two Poisson processes X1 and X2 with rates λ > 0 and µ > 0
respectively. Consider the new Poisson process X = X1 + X2. The merged
Poisson process X is a Poisson process with rate λ+ µ.

Furthermore, any arrival in the process X has probability λ/(λ + µ) of
being originated from X1 and probability µ/(λ+µ) of being originated from
X2.

This is easily generalized to the case where more than two Poisson pro-
cesses are merged.

Conditional Distribution of the Arrival Times

Suppose that we know that the number of arrivals up to time t > 0 is given
by a Poisson process Nt with rate λ. What is the conditional distribution of
the n arrival times T1, . . . , Tn given that there were exactly n arrivals? Let
Ti denote the i-th arrival’s time and A ⊂ [0, t].

P (Tn ∈ A|Nt = n) =

∫

A×(t,∞)

n!

tn
1(0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn)dt.

Let’s prove this result. First, recall that

P (Tn ∈ A|Nt = n) = P ((T1, . . . , Tn) ∈ A|Nt = n) =
P ((T1, . . . , Tn) ∈ A, Tn+1 > t)

P (Tn+1 > t)

The denominator is simply

P (Tn+1 6∈ A) =
e−λt(λt)n

n!

while for the numerator

P ((T1, . . . , Tn) ∈ A, Tn+1 > t) =

∫

A

∫

(t,∞)
fT1,...,Tn,Tn+1(t1, . . . , tn+1)dtn+1dt

=

∫

A

∫

(t,∞)
fT1(t1)

n+1∏

i=2

fTi|Ti−1
(ti − ti−2)dtn+1dt
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where we used the fact that the Poisson process has stationary and inde-
pendent increments. Then

=

∫

A

∫

(t,∞)
λn+1e−λt1

n+1∏

i=2

e−λti−ti−11(0 ≤ t1 ≤ · · · ≤ tn+1)dtn+1dt

=

∫

A

∫

(t,∞)
λn+1e−λtn+1(0 ≤ t1 ≤ · · · ≤ tn+1)dtn+1dt

=

∫

A
λne−λt1(0 ≤ t1 ≤ · · · ≤ tn)dt

hence

P ((T1, . . . , Tn) ∈ A|Nt = n) =

∫

A

n!

tn
1(0 ≤ t1 ≤ · · · ≤ tn)dt

Therefore the density is

fT1,...,Tn|Nt=n(t1, . . . , tn) =
n!

tn
.

Surprisingly, this is actually the distribution of the order statistics of a
uniform distribution.

Generating arrival times of a Poisson processes

What does the result above suggest? In order to simulate the arrival times
of a Poisson process on the time interval [0, t], one can

1. simulate a random variable Xt ∼ Poisson(tλ);

2. generate X independent uniform random variables (U1, . . . , UXt);

3. the arrival times of the Poisson process will be given by (tU(1), . . . , tU(Xt)).

Let’s call this method (1).
I also remind you of another way to generate arrival times of a Poisson
processes. Call this method (2). In a previous characterization of this pro-
cess, we have seen that the inter-arrival times are exponentially distributed.
Consequently, one can generate samples from a Poisson process sampling
directly from the exponential, that is from t = 0, for i ≥ 1, repeat the
following loop:

1. sample Ti ∼ Exponential(λ);

100



2. the i− th arrival time will be given by t+ Ti;

3. set t = t+ Ti;
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(a) Arrival times with method (1).
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(b) Arrival times with method (2).

Figure 7: Mmethod (1): λ = 0.1, n = 20. Method (2), λ = 0.1, t = 200.

Some code if you are curious:
## method (1)
lambda <− 0 .1
t <− 200
X <− runif ( rpois (1 , lambda∗t ) , 0 , 1 )

t imes <− data . frame ( time = sort (X)∗t ,
a r r i v a l = seq along (X) )

ggp lot ( times , aes (time , a r r i v a l ) ) +
geom step ( ) +
theme c l a s s i c ( ) +
theme ( legend . p o s i t i o n=”none” )

## method (2)
lambda <− 0 .1
n <− 20
X <− rexp (n , lambda )
t imes <− data . frame ( time = cumsum(X) ,

a r r i v a l = seq along (X) )

ggp lot ( times , aes (time , a r r i v a l ) ) +
geom step ( ) +
theme c l a s s i c ( ) +
theme ( legend . p o s i t i o n=”none” )

The Nonhomogeneous Poisson Process

So far we fixed the rate of a Poisson process to be a fixed scalar λ > 0.
However, we can generalize the definition of Poisson process and allow the
arrival rate to vary with as a function of time.

We say that a random process X is a nonhomogeneous Poisson process
with intensity function λ(t) for t ≥ 0 if

• X is a counting process
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• X0 = 0

• X has independent increments

• P (Xt+h −Xt = 1) = λ(t)h+ o(h)

• P (Xt+h −Xt ≥ 2) = o(h)

In this case, for any 0 ≤ s < t, we have

Nt −Ns ∼ Poisson

(∫ t

s
λ(u) du

)
.

Clearly the nonhomogeneous Poisson process described above does not have
stationary increments.

The Spatial Poisson Process

We saw that the Poisson process is a probabilistic model for random scatter-
ing of values across the positive real numbers. What if we want to randomly
scatter points over a spatial domain?

We say that a counting process N = {N(A)}A⊂X on a set X is a spatial
Poisson process with rate λ > 0 if

• N(∅) = 0

• N has independent increments, i.e. if A1, . . . , An are disjoint sets then
N(A1), . . . , N(An) are independent random variables

• N(A) ∼ Poisson(λ vol(A)).

The spatial Poisson process is a basic example of a point process. If we
denote Y1, Y2, . . . the ‘points’ of the process, the spatial Poisson random
process induces a random measure (the Poisson random measure) over the
subsets of X by means of

N(A) =

N(X )∑

i=1

1A(Yi).
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Lecture 17

Recommended readings: Ross, sections 4.1 → 4.3

Markov Chains

The Markov Property

Let X = {Xn}∞n=1 be a discrete-time random process with discrete state
space S. X is said to be a Markov chain if it satisfies the Markov property

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P (Xn+1 = xn+1|Xn = xn),

for any n ≥ 0.
The Markov property can be stated in the following equivalent way. Let

h be any bounded function mapping S∞ → R. Then X satisfies the Markov
property if

E(h(Xn+1, Xn+2, . . . )|Xn, Xn−1, . . . , X0)

= E(h(Xn+1, Xn+2, . . . )|Xn).

How can we interpret the above condition in an algorithmic fashion? Think
about h being any algorithm you may use on the future states of the pro-
cess (i.e. h is any feature of the future states of the process that you may
be interested to consider). Then your ‘best’ prediction of the algorithm’s
output on the process’s future states given the entire history of the process
up to the current state is a function only of the current state.

Example in class:
Let X = {Xn}∞n=0 be a random process where {Xn}∞n=0 is a collection of
independent random variables. Then, for all n ≥ 0,

E(h(Xn+1, Xn+2, . . . )|Xn, Xn−1, . . . , X0)

= E(h(Xn+1, Xn+2, . . . )) = E(h(Xn+1, Xn+2, . . . )|Xn).

Thus X satisfies the Markov property.

We are usually interested in two kinds of questions about Markov chains:

• how will the system evolve in the short term? In this case, we use
conditional probabilities to compute the likelihood of various events
and evolutionary paths.
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• how will the system evolve in the long term? In this case, we use
conditional probabilities to identify the ‘limiting behavior’ over vast
stretches of time, or the ‘equilibrium’ of the system.

Transition Probabilities

From now on, to simplify the notation, we will assume that the state space
S is the set (or a subset) of the positive integers {0, 1, 2, . . . }. The evolution
of a Markov chain with respect to time is described in terms of the transition
probabilities

P (Xn+1 = j|Xn = i) = Pn;i,j

Notice that in general the transition probability from state i to state j can
vary with time. It is very convenient, especially for computational reasons,
to arrange the transition probabilities into a transition probability matrix
(t.p.m.) P n.

When the transition probabilities Pn;i,j do not change over time, we
say that the Markov chain is time-homogeneous. In this case, we drop the
subscript n and we simply write

P (Xn+1 = j|Xn = i) = Pi,j .

Similarly, the t.p.m. of a time-homogeneous Markov chain is denoted P . In
this class we will mainly focus on time-homogeneous Markov chain.

Exercise in class:
Write the t.p.m. of the time-homogeneous Markov chain in the figure below.Example 3: Three-state example from last time

2

1

0

0.4 0.7

0.3 1.0

0.6

18

Exercise in class:
Consider a simple random walk starting from 0. At each time n, the pro-
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cess increments by 1 with probability p ∈ [0, 1] or decrements by 1 with
probability 1− p. Describe the t.p.m. of this process.

Stochastic Matrices

Consider a matrix A. The matrix A is said to be a stochastic matrix if it
satisfies the two following properties:

1. all the entries of A are non-negative, i.e. Ai,j ≥ 0 for all i, j

2. each row of A sums to 1:
∑

j Ai,j = 1 for all i.

Notice that we call the matrix ‘stochastic’, but such matrix is not random!
If the matrix A is such that 1. and 2. are satisfied and, furthermore, also
each column of A sums to 1 (

∑
iAi,j = 1 for all j), then A is said to be a

doubly stochastic matrix.

Question: is a t.p.m. a stochastic matrix? Why?

Question: is the t.p.m. of the 3-state Markov chain above a doubly stochas-
tic matrix?

Question: is the t.p.m. of the simple random walk above a doubly stochas-
tic matrix?

Using Transition Probabilities

Let’s start with an example. Consider again the 3-state Markov chain with
its t.p.m.

P =




0.6 0.4 0
0.7 0 0.3
0 1 0




Suppose that the initial distribution of the Markov chain at time 0 is pX0 =
(P (X0 = 0), P (X0 = 1), P (X0 = 2)) = (0.2, 0, 0.8). What is the probability
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distribution ofX1? What is the probability distribution ofXn, for any n ≥ 1?

Let P (n) denote the n-step t.p.m.. Based on the example above, we see
that P (n) = PPP . . .P , i.e. P (n) is the n-th power of P , P n, with respect
to the usual matrix multiplication.

This is made precise in terms of the Chapman-Kolmogorov equations,
which state that for all positive integers n,m we have

P (n+m) = P (n)P (m)

with P (0) = I.
Therefore, we conclude that a discrete-state time-homogeneous Markov

chain is completely described by the initial proabability distribution pX0 and
the t.p.m. P .

Probability of Sample Paths

Consider a sample path (i0, i1, . . . , in). Note that the Markov property
makes it very easy to compute the probability of observing this sample
path. In fact we have

P (path (io · · · , in) is observed)

P (X0 = i0 ∩X1 = i1 ∩ · · · ∩Xn = in)

= P (X0 = i0)P (X1 = i1|X0 = i0)P (X2 = i2|X1 = i0 ∩X2 = i1)× . . .
× P (Xn = in|Xn−1 = in−1 ∩ · · · ∩X1 = i1 ∩X0 = i0)

= P (X0 = i0)P (X1 = i1|X0 = i0)P (X2 = i2|X1 = i1) . . . P (Xn = in|Xn−1 = in−1).

Communicating Classes

We now turn to the questions of which states of the process can be reached
from which. This type of analysis will help us understand both the short
term and the long term behavior of a Markov chain.

Let i, j ∈ S be two states (possibly with i = j). We say that j is

accessible from i if, for some n ≥ 0, P
(n)
i,j > 0. This is often denoted i→ j.

Let again i, j ∈ S be two states (possibly with i = j). We say that i and
j communicate if i→ j and j → i. This is often denoted i↔ j.

The relation of communication satisfies the following properties for each
i, j, k ∈ S:

1. i↔ i
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2. i↔ j =⇒ j ↔ i

3. i↔ j ∧ j ↔ k =⇒ i↔ k.

Furthermore, communication is an equivalence relation. This means that
the state space S can be partitioned into disjoint subsets, where all the
states that communicate with each other belong to the same subset. These
subsets are called communicating classes. Each state of the state space S
lies in exactly one communicating class.

Exercise in class:
Consider the following t.p.m. of a Markov chain:

P =




1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 0 0 1




What are the communicating classes of this Markov chain?

Exercise in class:
Consider the following t.p.m. of a Markov chain:

P =




1 0 0 0 0 0 0
0.1 0 0.4 0 0.4 0 0.1
0 0.3 0 0.7 0 0 0

0.3 0 0 0 0.5 0 0.2
0 0.3 0 0.3 0 0.4 0
0 0 0 0 0 0.25 0.75
0 0 0 0 0 0.6 0.4




What are the communicating classes of this Markov chain?

Absorbing Classes

A communicating class is called absorbing if the Markov chain never leaves
that class once it enters.

Question: what communicating classes are absorbing in the above exam-
ples?
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Irreducibility

A Markov chain is said to be irreducible if it has only one communicating
class (trivial partition of the state space). In other words, it is possible to
get from any state to any other state in finite time, so the entire state space
is a communicating class.

If a Markov chain is not irreducible, then we can partition its state space
S into disjoint sets

S = D ∪ (∪iCi) (64)

where each Ci is an absorbing communicating class and D is a union of
non-absorbing communicating classes.

Note the following key implication: eventually, the Markov chain will
leave D and enter exactly one of the Ci’s. At that point the Markov chain
will act like an irreducible Markov chain on the reduced state space Ci.

Recurrent and Transient States

Informally, we say that a state i ∈ S is recurrent if the probability that
starting from state i the Markov chain will ever visit again state i is 1. On
the other hand, if the probability that starting from state i the Markov chain
will ever visit again state i is strictly less than 1, then we say that i is a
transient state.

Note that, based on the above definition,

• if i ∈ S is recurrent then, if the Markov chain starts from state i, state
i will be visited infinitely often

• if i ∈ S is transient then, each time the Markov chain visits state i,
there is a positive probability p ∈ (0, 1) that state i will never be visited
again. Therefore, the probability that starting from state i the Markov
chain will visit state i exactly n times is (1− p)n−1p; this means that
the amount of time that the Markov chain spends in state i (starting
from state i) is a Geometric random variable with parameter p. This
implies that, if the Markov chain starts from state i, the expected
amount of time spent in state i is 1/p.

From the above, it follows that a state i ∈ S is recurrent if and only
if, starting from state i, the expected number of times that the Markov
chain visits state i is infinite. This allows us to characterize recurrent and
transient states in terms of transition probabilities. Let In = 1{Xn=i}(Xn)
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be the random variable indicating whether the Markov chain is visiting state
i at time n. Then

∑∞
n=0 In is the amount of time spent by the Markov chain

in state i. We have

E

( ∞∑

n=0

In|X0 = i

)
=

∞∑

n=0

E(In|X0 = i)

=
∞∑

n=0

P (Xn = i|X0 = i) =
∞∑

n=0

P
(n)
i,i

and therefore

∞∑

n=0

P
(n)
i,i =∞ ⇐⇒ i is recurrent

∞∑

n=0

P
(n)
i,i <∞ ⇐⇒ i is transient.

This is the main way of checking if a state is recurrent/transient.
Notice also that if i ∈ S is recurrent then every state in the same commu-

nicating class is also recurrent. The property of being recurrent or transient
is a class property.

Example in class:
Consider the random walk on the integers. Since this Markov chain is irre-
ducible (all the states communicates), either all the states are recurrent or
they are all transient. It turns out that the random walk on the integers is
recurrent if and only if the probability of a positive/negative increment is
exactly 1/2. Otherwise, the random walk on the positive integers is tran-
sient (see Ross, pages 208-209 for a proof).

Exercise in class: Consider again the previous two Markov chains. Which
classes are recurrent/transient?
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Lecture 18

Recommended readings: Ross, sections 4.4

Markov Chains (part 2)

Periodicity

Let’s start with a simple example. Consider the t.p.m.

P =




0 1 0
0 0 1
1 0 0


 .

We have that

P (2) =




0 0 1
1 0 0
0 1 0


 .

and

P (3) =




1 0 0
0 1 0
0 0 1


 .

Starting from any of the states 0, 1, 2, how often does the Markov chain
return to the initial state?
The above example suggests that this simple Markov chain has a built-in
periodicity of order 3. How can we make this idea more formal and generalize
it to more complicated Markov chains?

For any state s ∈ S of a Markov chain, we define the period of s as

d(s) = gcd{n ≥ 1 : Pns,s > 0}

where gcd stands for ‘greatest common divisor’. This implies that P
(n)
s,s = 0

unless n = md(s) for some m ∈ Z.
An irreducible Markov chain is said to be aperiodic if d(s) = 1 for all

states s ∈ S.

Exercise in class:
Consider

P =




0 1
2

1
2

1
4 0 3

4
1
8

7
8 0


 .
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Is this Markov chain periodic or aperiodic?

Exercise in class:
Consider

P =




1
4

1
2

1
4

1
4 0 3

4
1
8

7
8 0


 .

Is this Markov chain periodic or aperiodic?

Periodicity is another class property. This means that the period is
constant over any fixed communicating class of a Markov chain.

Cyclic Class Decomposition12

Let X be an irreducible Markov chain with period d. There exists a partition
of S

S = ∪dk=1Uk
such that

Ps,Uk+1
= 1

for s ∈ Uk and k = 0, 1, . . . , d− 1.

The sets U1, . . . ,Us are called cyclic classes of X because X cycles through
them successively. It thus follows that the ‘accelerated’ Markov chain Xd =
{Xid}∞i=1 has transition probability matrix P d and each Uk is an absorbing,
irreducible, aperiodic class.

In light of this result, we can rewrite the state space decomposition of
equation (64) as

S = D ∪ (∪iCi) = D ∪
(
∪i ∪dij=1 Ui,j

)

where each absorbing class Ci is an irreducible Markov chain with period di
whose state space can be partitioned into the di cyclic classes Ui,1, . . . ,Ui,di .

Positive and Null Recurrence

We already defined the notion of recurrence in the previous lecture. Here,
we introduce a somewhat technical (but important) point. Suppose that

12We have not covered this topic in class.
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state s ∈ S is recurrent. Then, based on the previous lecture, this means
that if the Markov chain starts from state s, the chain will visit state s
in the future infinitely often. We now make the following distinction for a
recurrent state s (or, equivalently, for the communicating class of s, since
recurrence is a class property):

• s is positive recurrent if, starting from s, the expected amount of time
until the Markov chain visits again state s is finite

• s is null recurrent if, starting from s, the expected amount of time
until the Markov chain visits again state s is infinite.

While there is indeed a difference between positive and null recurrent states,
it can be shown that in a Markov chain with finite state space all recurrent
states are positive recurrent.

Ergodicity, Equilibrium and Limiting Probabilities

Consider a Markov chain with t.p.m. P . Suppose there exists a probability
distribution π over the state space such that πP = π. This implies that
π = πP (n) for all integers n ≥ 0. The probability distribution π is called the
equilibrium distribution or the stationary distribution of the Markov chain.
In equilibrium πj is the propotion of time spent by the Markov chain in
state j.

A communicating class is said to be ergodic if it is positive recurrent and
aperiodic. We have the following important result: for an irreducible and
ergodic Markov chain the limiting probabilities

πj = lim
n→∞

Pnij j ∈ S

exist and the limit does not depend on i. Furthermore, the vector π of the
above limiting probabilities is the unique solution to π = Pπ and

∑
j πj = 1

(hence it corresponds to the stationary distribution of the Markov chain).
The limiting probabilities can also be shown to correspond to the long-

term proportion of time that the Markov chain spends in each state. More
precisely, we have that

πj = lim
n→∞

vij(n)

n

where vij(n) denotes the expected number of visits to state j, starting from
state i, within the first n steps.
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Equilibrium When the State Space is Finite

Let U be a |S| × |S| matrix with entries all equal to 1, let u be a |S|-
dimensional vector with entries all equal to 1 and let o be a |S|-dimensional
vector with entries all equal to 0. Let X be an irreducible, aperiodic, and fi-
nite state (and thus ergodic) Markov chain. If we want to find the stationary
distribution of X we must solve

{
π(I − P ) = o

πU = u.

The solution to the above system is π = u(I − P + U)−1.

Exercise in class:
Consider the t.p.m.

P =




0.6 0.4 0
0.7 0 0.3
0 1 0


 .

Apply the above formula to verify that π ≈ (0.5738, 0.3279, 0.0984).

It can be shown that if the matrix P is doubly stochastic, we have that
πj = 1/|S| for all j ∈ S.

Exercise in class:
Consider again the random walk on the pentagon. What is the stationary
distribution of this Markov chain?
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Lecture 19

Recommended readings: Ross, section 4.6

Markov Chains (part 4)

More on Equilibrium Distribution and Limiting Probabilities

In the previous lecture, we studied that if an irreducible Markov chain is
ergodic (i.e. positive recurrent and aperiodic), the limiting probabilities

lim
n→∞

Pnij j ∈ S (65)

exist and these limits do not depend on i or on the initial distribution pX0 .
Furthermore, we said that, whenever a stationary distribution π exists, the
limiting probabilities above correspond exactly to the entries of π.

Let’s clarify a slightly technical point. While it is true that in order
for the Markov chain to admit the above limiting probabilities we need the
Markov chain to be irreducible and ergodic, the existence of a stationary
distribution does not require the aperiodicity assumption.

Hitting Probabilities (part 1)

Recall the decomposition of the state space of equation (64). Suppose that
the Markov chain starts at a state s ∈ D which is not absorbing. At some
point in time, the Markov chain will eventually enter one of the absorbing
classes Ci of the decomposition (64) and will be ‘stuck’ in that class from
that time on. What is the probability that, starting from s ∈ D, the chain
will hit the absorbing class Ci?

Define hi(s) as the probability that, starting from a state s ∈ S, the
chain will hit the absorbing class Ci. We have

hi(s) =
∑

s′∈Ci

Pss′ +
∑

u∈D
Psuhi(u)

and the vector hi is the smallest non-negative solution to the above equation.
Define PD to be the submatrix of P associated to D and bi(s) =∑
s′∈Ci Pss′ for s ∈ D. When S is finite, we can rewrite the above equa-

tion in vector/matrix form as

(I − PD)hi = bi =⇒ hi = (I − PD)−1bi.
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Exercise in class:
Let X be a Markov chain with t.p.m.

P =




1 0 0 0 0
1
2 0 1

3
1
6 0

0 1
2 0 1

2 0
0 1

3
1
3 0 1

3
0 0 0 0 1




defined on S = {0, 1, 2, 3, 4}. We have that C1 = {0}, C2 = {4}, and
D = {1, 2, 3}. Then,

PD =




0 1
3

1
6

1
2 0 1

2
1
3

1
3 0


 ,

b1 =




1
2
0
0


 ,

b2 =




0
0
1
3


 ,

and

(I − PD)−1 =
1

19




30 14 12
24 34 21
18 16 30


 .

Thus,

h1 =
1

19




15
12
9




and

h2 =
1

19




4
7
10


 .

Block Decomposition of the T.P.M.

From now on, we consider a finite state Markov chain with a set A of |A| = a
absorbing states and a set T of |T | = t of transient states. We can rearrange
the t.p.m. of the Markov chain as

P =

(
I 0
S T

)
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where I is a a× a matrix, T is a t× t matrix, S is a t× a matrix, and 0 is
a a× t matrix of zeroes. Notice that the values of S and T are not unique:
they depend on how you order the states.

Hitting Probabilities (part 2), Expected Hitting Times, Expected
Number of Visits

In terms of the block decoposition of the t.p.m., it can be shown that we
can obtain the hitting probabilities matrix by simply computing

(I − T )−1S.

On the other hand, the matrix (I − T )−1 gives us the expected number
of visits to state s′ starting from state s, with s, s′ ∈ T .

Finally, if we let u denote a vector of ones, it can be shown that m =
(I − T )−1u returns the vector of the expected time until, starting from a
transient state s ∈ T , the Markov chain hits an absorbing state.

Example in class (the rat maze):
A rat is placed in the maze depicted below. If the rat is in the rooms 2, 3,
4, or 5, it chooses one of the doors at random with equal probability. The
rat stays put once it reaches either the food or the shock.

The t.p.m. for the chain is

P =




1 0 0 0 0 0
1
2 0 0 1

2 0 0
1
3 0 0 1

3
1
3 0

0 1
3

1
3 0 0 1

3
0 0 1

2 0 0 1
2

0 0 0 0 0 1




Using the formulae above, we have that the matrix of the expected number
of visits is 



26
21

2
7

5
7

2
21

4
21

10
7

4
7

10
21

10
21

4
7

10
7

4
21

2
21

5
7

2
7

26
21


 ,

while the matrix of hitting probabilities is



5
7

2
7

4
7

3
7

3
7

4
7

2
7

5
7



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and the expected times until absorption are




49
21
56
21
56
21
49
21


 .

How do we interpret these numbers?

A First Look at Long-Term Behavior

Define P
(∞)

ij = limn→∞ P
(n)

ij , if the limit exists. If this exists for all states i and

j, then put these into the matrix P (∞).

Exercise 4. [Exists?] Construct a transition matrix P such that P (∞) does not

exist.

Exercise 5. [The Rat Maze]

A rat is placed into the above maze.

If the rat is in one of the other four

rooms, it chooses one of the doors at
random with equal probability. The rat

stays put once it reaches either the food

(F) or the shock (S).

Food (F)

2 4

3 5

Shock (S)

Write out the transition matrix P and the limiting transition matrix P(∞) for the

rat maze example. If the rat starts in room “2,” what is the probability it reaches

the food before the shock?
13An introduction to Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a class of algorithms that provide
approximate sampling techniques by means of Markov chains. They are
widely diffused in statistics, mathematics, physics, and many other fields.
Why are they so useful?
Let’s say that you need to compute the expectation of some function g with
respect to the distribution P admitting density function f with support S,
that is

E[g(X)] =

∫

S
g(X)f(X)dx.

As we have seen, the integral might be too hard to compute or might simply
not admit a closed-form solution. In this case, we say that it is intractable.
Then one can rely either on numerical or on stochastic approximations.
MCMC algorithms fall into the second class.

Say, for instance, that you would like to compute the area of a circle with
radius 1. We know that the area of the circle is πr2 = π ·1/4. We also know
that the are of the square in which the circle is inscribed is 4. How can we
estimate the value of π? The general Monte Carlo recipe is the following:

sample X1, . . . ,Xn
iid∼ fX1,X2 where

fX1,X2 = 1(−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1).
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that is, we sample points from the square. Then let Yi = 1(X2
i,1 +X2

i,2 ≤ 1).
The MC estimator for the value of π is given by

π̂ =
4

n

n∑

i=1

Yi.

What guarantees do we have for such an estimator? By the strong law of
large numbers we know that, since π̂ is unbiased, then π̂

p→ π as n→∞.
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Lecture 20

An introduction to Markov Chain Monte Carlo13

Markov Chain Monte Carlo (MCMC) is a class of algorithms that provide
approximate sampling techniques by means of Markov chains. They are
widely diffused in statistics, mathematics, physics, and many other fields.
Why are they so useful?
Let’s say that you need to compute the expectation of some function g with
respect to the distribution P admitting density function f with support S,
that is

E[g(X)] =

∫

S
g(X)f(X)dx.

As we have seen, the integral might be too hard to compute or might simply
not admit a closed-form solution. In this case, we say that it is intractable.
Then one can rely either on numerical or on stochastic approximations.
MCMC algorithms fall into the second class.

In more generality, MCMC’s in machine learning are mainly used in (1)
Bayesian inference for the computation of normalizing of constants in the
posterior, marginalization, or expectation; (2) statistical mechanics; (3) op-
timization; (4) penalized likelihood model selection.

Motivating example
Say, for instance, that you would like to compute the area of a circle with
radius 1. We know that such an area is πr2 = π · 1. We also know that the
are of the square in which the circle is inscribed is 4. How can we estimate
the value of π? The general Monte Carlo recipe is the following: sample

X1, . . . ,Xn
iid∼ fX1,X2 where

fX1,X2 = 1(−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1).

that is, we sample points from the square. Then let Yi = 1(X2
i,1 +X2

i,2 ≤ 1).
The MC estimator for the value of π is given by

π̂ =
4

n

n∑

i=1

Yi.

What guarantees do we have for such an estimator? By the weak law of
large numbers we know that, since π̂ is unbiased, then π̂

p→ π as n → ∞.

13These lecture notes are roughly based on a class that I took at the University of
Torino.
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Moreover, if σ2 = V (Y ), we also know that
√
n(π̂ − π)

d→ N (0, σ2) by the
central limit theorem as n→∞.

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
X1

X
2

Figure 8: 1000 samples from a bivariate uniform distribution on [−1, 1]2.
The blue points fall inside the circle of radius 1, the black points fall outside.
The estimate value of π from these samples is 3.1444.

n <− 1e3
x1 <− r u n i f (n ,−1 ,1)
x2 <− r u n i f (n ,−1 ,1)
lab <− i f e l s e ( x1ˆ2+x2ˆ2<=1 ,1 ,0)

df <− data . frame (X1 = x1 , X2 = x2 , l a b e l = lab )

ggp lot ( df , aes (X1 , X2 , c o l = l a b e l ) ) +
geom point ( ) +
xlim (−1 ,1) +
ylim (−1 ,1) +
theme bw ( ) +
theme ( legend . p o s i t i o n=”none ”)

General Monte Carlo recipe
Let’s assume that we are interested in computing a numerical approximation
to the following integral

I(g) =

∫

S
g(x)f(x)dx
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and that we are able to draw samples from the density function f . Then

• draw n samples {xi}ni=1 from the density f with support S;

• compute In(g) = 1
n

∑n
i=1 g(xi) to approximate the integral.

What guarantees of convergence to I(g) does In(g) have? As above,

• by weak LLN, In(g)
p→
∫
S g(x)f(x)dx as n→∞;

• let σ2 = V (g(X)). By CLT,
√
n(In(f)− I(f))

d→ N (0, σ2) as n→∞.

Although the MC recipe might appear to be general enough to tackle any
kind of problem, most of the times we do not know how to sample from
density f . The techniques in the MCMC framework provide a way to do
this, that is to sample .
While the MCMC class of algorithms is very large, we will only focus on
one them for the sake of time. I chose Metropolis Hastings algorithm to
motivate why we are so much interested in Markov chains. If you are more
interested in the topic, you should first look into MC algorithms such as
importance sampling or rejection sampling.

The basic idea of MCMC algorithms is to produce samples from a Markov
chain having f as stationary distribution. This allows, at any step of the
chain, to obtain samples that come from f . Of course, we require the Markov
chain to be irreducible and ergodic: this allows us to recover in asymptotics
the limiting probabilities, and therefore also the stationary distribution with-
out computing the it directly.

The Metropolis-Hastings algorithm

The MH (Metropolis-Hastings) algorithm was first developed by Metropolis
and then generalized by Hastings in 1970. Let us denote with f the target
density we want to draw samples from. Moreover, let

• Q be the proposal distribution represented by an irreducible and ape-
riodic TPM Q;

• A be the matrix of acceptance probabilities.

The algorithm works in the following way:

1. given the current state of the chain at time n = i, Xn = i, a proposal
X∗n+1 from the i − th row of Q is made such that P (Xn+1 = j|Xn =
i) = Qij .
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2. then the move of the chain occurs with probability

Xn+1 =

{
X∗n+1 with probability Aij

Xn with probability 1−Aij

Equivalently, the resulting TPM for this chain is

Pij =

{
QijAij for i 6= j

1−∑i 6=j QijAij for i = j

The MH algorithm with acceptance probabilities of the form

aij = min

{
1,
fj
fi

qji
qij

}

generate a reversible Markov chain, that is a chain that satisfied the de-
tailed balance condition. Although we have not seen such a property,
this ensures that f is a stationary distribution for this chain. Con-
sequently, after a certain burning time of the chain, that you might
imagine as a necessary number of steps for the chain to get into the
asymptotic regime after forget the initial state, the chain will provide
sample from the target density. The samples are not independent, but
one cam both generate several separate Markov chains and consider
samples only k steps apart, where k is determined looking at the au-
tocorrelation function.The matrix Q typically needs careful design.

Two notable cases of the MH algorithms are

• the independent sampler: Qji does not depend on i, but only on
j;

• the Metropolis algorithm: Qij = Qji.
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Figure 9: Metropolis-Hastings for sampling from the Poisson mixture P=0.3
·Pois(3)+0.7·Pois(15). The length of the chain is n = 105 and burn-in
time is 103 steps. The proposal is taken to be a symmetric random walk.
Out of the 99 · 103 steps considered, only samples every k = 10 steps are
considered. Figure (a): the black bars represent the normalized histogram
of the samples, while the red dots denote the true density. Figure (b): 200
consecutive (every k = 10, as explained above) samples from the MC.

Some code to generate the example in figure 9:

n <− 1e5
i <− 1
path <− c (4 )
whi l e ( i <= n){

X prop <− max( path [ i ]+sample ( c ( −1 ,1) ,1) ,0) # proposa l
i f ( r u n i f (1 ,0 ,1)<=min (1 , dens ( X prop )/ dens ( path [ i ] ) ) ) { # acceptance

path <− c ( path , X prop )} e l s e {
path <− c ( path , path [ i ] ) } #

i <− i + 1
}

burn in <− 1e3 # burn in time
path <− path [ burn in : l ength ( path ) ] # d i s ca rd burn in time
k seq <− seq (1 , l ength ( path ) , by=10) # f o r unco r r e l a t ed samples
path <− path [ k seq ] # d i s ca rd c o r r e l a t e d samples

d f dens <− data . frame ( path = c ( 0 : 3 0 ) , y = dens ( c ( 0 : 3 0 ) ) )
d f path <− data . frame (X = path )

ggp lot ( df path , aes (X) ) +
geom histogram ( binwidth =1, aes ( y = . . dens i ty . . ) ) +
theme bw ( ) +
geom point ( data=df dens , aes ( x = path , y = y ) ,

c o l = ’ red ’ , i n h e r i t . aes = FALSE)
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df path <− data . frame ( index = c ( 1 : 2 0 0 ) , X = path [ 1 : 2 0 0 ] )
ggp lo t ( df path , aes ( index , X) ) +

geom step ( ) +
theme bw ( )

This is only one out of the 435 estimated bridges present in Venice,
and it’s not even Rialto’s or Calatrava’s. If you are more interested
about these methods, check out the following introductory paper and
many tutorials online.
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Figure 1: Relationships between probability distributions. Taken from
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html.
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