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AVERAGED SHIFTED HISTOGRAMS: EFFECTIVE 
NONPARAMETRIC DENSITY ESTIMATORS IN SEVERAL 

DIMENSIONS' 

By DAVID W. SCOTT 

Rice University 
We introduce two nonparametric multivariate density estimators that 

are particularly suitable for application in interactive computing environ- 
ments. These estimators are statistically comparable to kernel methods and 
computationally comparable to histogram methods. Asymptotic theory of the 
estimators is presented and examples with univariate and simulated trivariate 
Gaussian data are illustrated. 

1. Introduction. In this paper we introduce two new nonparametric mul- 
tivariate density estimators designed for data analysis in three and four dimen- 
sions, but useful in one and two dimensions as well. The basic construction in 
one dimension is easy to describe: form several histograms with equal bin widths 
but different bin locations and average these shifted histograms, hence the name 
averaged shifted histograms. In what follows we examine the need for these 
estimators, demonstrate their close relationship to kernel methods, investigate 
their asymptotic properties, and present some examples. 

1.1 Motivation for a new estimator. These new estimators were developed to 
analyze large multivariate data sets. One of our first applications involved 
LANDSAT IV remove sensing data. The data were known to be non-Gaussian, 
coming from images covering many fields of agricultural crops. Hence a non- 
parametric technique seemed appropriate. The number of samples was large and 
organized into units of 22,932 points-117 scan lines with 196 picture elements 
(pixels) per line, 1.1 acres per pixel. The LANDSAT IV satellite has a four- 
channel sensor so that the raw data are quadrivariate. Further, a NASA scientist 
had developed an agronomic growth model that nonlinearly transformed multiple 
images, usually five overpasses in a single growing season, into a trivariate data 
set; see Badhwar (1980). I had decided to represent these trivariate data by 
drawing contours of an estimated trivariate kernel density function on a color 
graphics terminal, having had success applying bivariate kernel density estima- 
tion to medical data (Scott et al., 1980); see Figure 3 for an example of the 
contour representation. Graphing the bivariate estimates had required only a 
minute or two of CPU with several hundred points. However, it quickly became 
apparent that several hours of CPU might be required for the trivariate kernel 
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estimates, making real time display and interactive adjustment of the three 
smoothing parameters almost impossible. 

Improved computer graphics technology has encouraged the development of a 
variety of graphical techniques for the display for multivariate data; see Tukey 
and Tukey (1981) and Chambers et al. (1983). We believe density estimation has 
an important role in this field, particularly with data (and projected data) in 
three and four dimensions. The complexity of structure possible in data increases 
rapidly from one to four dimensions. High-dimensional structure presents prob- 
lems well beyond the scope of this paper; by high-dimensional structure we mean 
density features that cannot be adequately described in any subspace of dimension 
less than five. 

1.2 Density estimation background. A variety of nonparametric probability 
density estimators has been proposed and studied since the pioneering work on 
kernel methods by Rosenblatt (1956) and Parzen (1962); see Tapia and Thomp- 
son (1978). Existing estimators are not well-suited to modern data analysis that 
requires interactive computing for very large data sets with many variables. Most 
density estimation research has dealt with the one-dimensional case and appli- 
cations to relatively small data sets. Multivariate extensions of histogram, kernel, 
and nearest neighbor density estimators have been studied theoretically and are 
usually applied to bivariate data. Kernel estimates with five or more variables 
have been reported in medical applications; see Habbema et al. (1974). 

The histogram is extremely efficient computationally compared to kernel 
methods, but it is quite inefficient statistically. Relative sample sizes required 
for histograms having errors comparable to kernel estimates increase rapidly for 
increasing sample size and dimension. Recently the frequency polygon, which is 
formed by linear interpolation of adjacent mid-bin values of a histogram, was 
studied (Scott, 1985) as a bridge between these estimators, sharing the compu- 
tational simplicity of the histogram and the same order of statistical efficiency 
as the kernel estimator. Thus, the frequency polygon can be useful for interactive 
graphics; however, there are two difficulties with its direct use on ordinary 
histograms for our purposes. First, for any sampling density satisfying the set of 
conditions (C2) given in Section 2.2, the univariate frequency polygon requires 
27% more samples to achieve the same statistical efficiency as the optimal 
Epanechnikov kernel estimator with respect to integrated mean squared error 
(IMSE). The bivariate frequency polygon requires 51% more independent Gaus- 
sian samples than the bivariate Epanechnikov product kernel estimator. In 
several dimensions, the statistical inefficiency of the frequency polygon may be 
unacceptable for moderate sample sizes. The second problem deals with arbitrar- 
iness in the choice of bin edge locations. The bins of the optimal frequency 
polygon are wider than those for the optimal histogram. With large bins in 
several dimensions, bin edge effects are more pronounced and the choice of mesh 
position more important since estimators with different mesh origins may have 
different subjective features or number of modes. 

For these reasons we propose two new density estimators: first, the averaged 
shifted histogram (ASH), which we will show has the computational efficiency 
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of a histogram and approaches the statistical efficiency of a kernel estimator. 
Our second estimator is a frequency polygon of the averaged shifted histogram 
(FP-ASH), which we will show is functionally identical to a related interpolated 
kernel estimator of binned data. 

2. The averaged shifted histogram. 

2.1 Construction and relationship with kernel methods. Consider a histogram 
constructed over an equally spaced mesh with bin width h using a random sample 
lx1, *.., xn, from the density f(x). Without loss of generality, we shall assume 
that 0 is a bin edge. Similar histograms could be constructed by choosing a bin 
edge between 0 and h. Consider m such histograms of the same data set, each 
with bin width h, but with bin edges given by {ih/m, i = 0, ... , m - 11. Let this 
smaller (bin) width be denoted by a = h/m. Define the finer mesh ItkI by tk = k5. 
Let the kth bin be denoted by Ik = [tk-l, tk). Let nk be the number of values from 
the random sample x1, * * , xn} falling in Ik. Then for x E Ik, the value of the ith 
shifted histogram, denoted by ai(x), is defined by 
(2.1) ai(x) = (1/nh) Ej=ol nj+i+[(k-i)/m]m X E Ik, i = 0, ..., m-1, 

where [y] is the greatest integer less than or equal to y. The sum simply counts 
the number of points in the larger histogram bin of width h = mb. 

Each of the m histograms defined in (2.1) is a reasonable choice for a histogram 
of the data with bin width h. Consider their pointwise average: 

(2.2) f (x) = (1/m) ilo' ai(x) x E Ik. 

An equivalent form is 

(2.3) f (x) = (1/mnh) E iLm (m - I i I )nk+i x E 1k. 

The behavior of this estimator for increasing m is clear if we rewrite 

(2.4) f(x) = (1/nh) XmLE m (1- (iI/m))nk+i 

and recall that the kernel density estimator is given by: 

(2.5) fK(x) = (1/nh) X,=1 K((x - xi)/h). 

As m -- oo, (2.4) converges to (2.5) for the particular kernel 

(2.6) K(t) = (1 - I t I (t). 

Thus the ASH with uniform weighting on the shifted histograms approximates 
a triangle kernel estimator. We may consider a general bin weighting function 
Wm(i) rather than (1 - I i l/m)) in (2.4) that satisfies 

(2.7) Wm(-i) = Wm(t), Ei=I-m wm(i)/M) = 1, wm(i) t 0. 

The second condition insures that f(x) integrates to one and the third that 1 (x) 
is nonnegative. Each function wm(i) must correspond to a finite support kernel 
satisfying the set of conditions (C3) given in Section 2.2. 

The extension of the averaged shifted histogram to higher dimensions is 
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straightforward. Let hj be the histogram bin width in the jth of p dimensions 
and suppose we shift mj times in the jth dimension. Then, for example, the ASH 
estimator for trivariate data p = 3 is 

f (x) = (1/nh1h2h3) il Zi2 ,i3 w(i1, i2, i3)nkl+il,k2+i2,k3+i3, 

for x in bin Ik,,k,,k3 and where the sum over ij goes from 1 - mj to mj - 1 with 

W(il, i2, i3) = (1 - (I il /mM)( - (I i2 j/m2))(I-(I i3 I/m3)). 

As mi -) oo the multivariate ASH converges to a product triangle kernel estimator. 
Again other weighting functions may be constructed. 

2.2 Regularity conditions. We are interested in conditions that are sufficient 
to bound remainder terms in an IMSE expression of a density estimator. Such 
conditions are usually stronger than those required just for consistency. For 
convenience, the "roughness" or squared L2 norm of a function X will be denoted 
by 

00 
R(q) = f ?(X)2 dx. 

For a histogram, let S (f ) be the support of f and suppose that S ( f ) is the union 
of equal-width bins. Then a set of sufficient conditions is (Freedman and 
Diaconis, 1981): 

(Cl): f ' absolutely continuous on S(f); f S(f) f (X)2 < 00; f S(f) / I(X)2 dx > 0. 
For a frequency polygon, a set of sufficient conditions is (Scott, 1985): 

(C2): f " absolutely continuous on (-oo, om); f "' E L2or R(f"') < oo. 

For a finite-support nonnegative kernel estimator, we require (see the Appendix): 

(C3): conditions (C2), and K > 0; K E L2; K continuous on the interior of its 
support (a, b); f K(x) dx = 1; YK = 0 and &> 0, 

where iK and aU are the first two moments of the kernel, which is itself a density. 
Notice that if f (k) (x) E L2 then f, f ( f, * , / (k-) E L2. This follows from a result 
in Rosenblatt (1971), in which conditions similar to (C3) are given. 

3. Integrated mean squared error of the averaged shifted histo- 
gram. We shall evaluate the performance of the one-dimensional ASH by 
computing its integrated mean squared error (IMSE) as a function of both the 
bin width h and the shifting parameter m. Walter and Blum (1979) have shown 
that the ordinary histogram is a kernel estimator and have given the explicit 
form of the kernel. Similarly, the averaged shifted histogram is a kernel estimator. 
The exact form of the kernel is not of immediate interest here, but we note that 
the kernel is piecewise constant and has finite support. Theorem 5, which is 
stated in the Appendix and generalizes Walter and Blum's pointwise results, 
shows that conditions (C3) are sufficient to obtain the usual kernel IMSE 
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expression and to insure that the remainder term is bounded. In order to apply 
Theorem 5 to the averaged shifted histogram, we require two modifications in 
the proof. First, the ASH kernel is not continuous but only piecewise continuous. 
Thus when computing the bias, we have many equations like (A.3), one for each 
interval where the kernel is constant. Adding these equations gives a result very 
similar to (A.5) after using a convexity argument, but with a constant different 
from a'. Second, additional bias terms arise because AK O 0 for the ASH kernel. 
Thus Theorem 5 may be used to guarantee that the remainder terms in the 
IMSE of the ASH are well-behaved but does not provide a constructive method 
for determining the constants in the leading terms in the IMSE. This we do in a 
straightforward manner in Sections 3.1 and 3.2. 

We obtain the leading terms in the IMSE by finding the mean squared error, 
the sum of the variance and squared bias, at every point in a typical bin, 
integrating over each bin, and finally combining all bins over the real line. For 
convenience in our Taylor's series analysis, we examine a bin centered on 0 
rather than bordering on 0; hence, in this section we define bin Ii = [(i - 1/2)6, 
(i + /2)). The number of points ni falling in bin Ii is Binomial, B(n, pi), where 
Pi f I, f (t) dt. We shall prove the following theorem: 

THEOREM 1. Assume that the sampling density f satisfies the set of regularity 
conditions (C2). Then the integrated mean squared error of the averaged shifted 
histogram estimator (2.4) with bin width h and shift parameter m is given by 

(3.1) IMSE = (1 + 2 - R(f) + h R(f') 

+j- h4( - + R(f)Rf" + 0 ( + h5) 
144 ( 2 54 n )m 

which, for sufficiently large n and ignoring terms of order n-1, is minimized by 
choosing m = oo and smoothing parameter h as for a triangle kernel estimator. 

3.1 Bias of the averaged shifted histogram. For convenience, we analyze the 
bias in bin Io, which is centered about 0. Since Eni = npi, 

Ef(x) = (1/mh) Xi=i-rm (m - I i )pi x E Io. 

Taking a Taylor's series of pi about x, we find 

Ef (x) = f(x) - xf() + + m 2 )]f (X) 

x o 12( 2) f I(x) + 0(63). 
- + ~m - m )f' +o3 

The squared bias at x has four leading terms: using approximations indicated by 
I6/ 6/2 3 62 //2 

.2 x2dXf/()2 2dX -f'(0)2 J f (X)2, 
-a/2 -a/2 12 12 -/2 
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the total integrated and squared bias for bin I0 is 
I /2 

[Ef(x) - f(x)]2 dx 
-5/2 

(3.2) - 12 Jf'(X)2 dx + 720+ 144] f(X)2 dx 

+ 72 360 {f '(x)f (x) dx + 0(66). 

Expression (3.2) is valid for every bin Ik. Summing over all bins and noting 
f f (x)f(X)dx= - f " (x)2 dx we obtain 

(3.3) Bias(x)2 dx = R(f ') -1 (1 - ___ + R(f ) + 0(h ). 00 ~~12M2 +144+ R(" 

We may check (3.3) for two extreme cases. When m = 1, the ASH is the 
ordinary histogram and the bias in (3.3) is dominated by h2R(f ')/12, the same 
expression obtained by Scott (1979). When m = 00, the ASH becomes a kernel 
estimator with kernel (2.6). Parzen (1962) has shown that the leading bias term 
for the kernel estimator is 

(3.4) 'Ah SK4R(f ) 

For kernel (2.6), a 2= 16, and it follows that (3.3) and (3.4) are equal. 
For relatively small values of m, we can essentially eliminate the portion of 

the bias in (3.3) due to binning. For moderate sample sizes, m greater than 5 or 
10 seems sufficient. 

3.2 Integrated variance. The variance in bin I of the ASH, which is given 
by (2.4) with k = 0, may be computed by noting Var(ni) = npi(1- pi) and 
Cov(ni, nj) = -npipj: 

Var f(x) = (1/m3n3h) EXlL (m-jiJ)2p,-(1/m4n62){XmLm (m - if)pj. 

Substituting 6f (0) for pi and summing we obtain 

(3.5) Var f (x) = (2f(0)/3nh)(1 + (1/2m2)) - (f(0)2/n) + 0(h/n). 

Equation (3.5) is valid in bin Ik if we replace 0 by tk. Integrating over Io multiplies 
(3.5) by 3. Summing over all bins and using midpoint numerical quadrature, we 
obtain 

(3.6) f Var f (x) dx = 3h(1 + 22) R(f) + 

For the ordinary histogram, Scott (1979) proved that the integrated variance 
is 1/(nh), with which (3.6) agrees when m = 1. Parzen (1962) showed the 
integrated variance for the kernel estimator is dominated by R(K)/nh. Now 
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R (K) = 2/3 for the triangle kernel; hence (3.6) agrees with Parzen's result when 
m = oo. Finally, adding (3.3) and (3.6), we have proven the theorem. 

4. Frequency polygon ASH estimator. The ASH requires the specifi- 
cation of not only the smoothing parameter h but also the shift parameter m. 
The interplay of these two parameters is highly nonlinear. Although our theorem 
suggests choosing m = oo to eliminate the 0(h2) term, we would lose computa- 
tional efficiency. The ASH estimator, when graphed, looks like an ordinary 
histogram with bin width a rather than h = mb. For graphical reasons, the 
discontinuity of the ASH is not appealing in more than one dimension. These 
drawbacks can be eliminated by constructing a frequency polygon of the ASH, 
an estimator we will denote by g(x). The FP-ASH is well-suited for graphics 
hardware because all continuous functions are drawn as piecewise linear func- 
tions. Multivariate frequency polygons of p variables connect p + 1 adjacent 
histogram mid-bin values (above a p-simplex basis element) with a hyperplane. 
In the bivariate case, take two adjacent triangular (2-simplex) basis elements, 
which form a rectangle (with one diagonal) defined by four adjacent histogram 
bin centers, and reflect (not translate) this rectangle about its sides to cover the 
plane with basis elements; see Figure 1. With p variables, triangulate the rectangle 
formed by 2p adjacent bin centers to obtain p! p-simplex basis elements. Again, 
extend by reflecting the rectangle. 

4.1 Integrated mean squared error. The FP-ASH is also a kernel estimator. 
The kernel has finite support, zero mean, and is a continuous piecewise linear 

Z 

FIG. 1. Illustration of the construction of a bivariate frequency polygon ASH surface. In the plane are 
shown the rectangular histogram bins (thin lines) and triangular basis elements (thick lines) formed by 
projecting the frequency polygon edges onto the plane (see text). 
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function (Terrell, 1984). Thus Theorem 5 is directly applicable. We find it easier 
to proceed as in Section 3, computing the pointwise bias and variance in a typical 
bin and combining to obtain the IMSE. In this section, we return to our original 
bin mesh definition given in Section 2.1 with Ik = [(k - 1)6, k6). We first compute 
the IMSE over the interval [-b/2, b/2]. The FP-ASH is given by 
(4.1) g(x) = (1/2 - x/6) fo + (1/2 + x/6l) fi, x E [-6/2, 6/2] 
where fo and fI are the values of the ASH in bins Io and I1, respectively. Taking 
a Taylor's expansion of pi about x, we find 

Eg(x) = f(x) + [(62/12)(1 + m2) - (x2/2)]f"(x) + 0(62). 

Integrating the squared bias over [-6/2, 6/2] as in equation (3.2), we obtain 
O/2 1 C#/2 

(4.2) J Bias(x)2 dx (20m4 + 2Gm2 + 9)64 f "(X)2 dx + 0(66). 
-#/2 2880 -#/2 

Now an expression similar to (4.2) is valid between the midpoints of bins Ik and 
'k+1. Summing over all such intervals, we obtain 

(4.3) Bias(x)2 dx = 1 + + 'Mh4R(f") + 0(h 5). 
- 144 m 20m 

For the ordinary frequency polygon m = 1, Scott (1985) obtained 49/2880 as the 
constant in the leading bias term, which checks. As m - oo we again approach 
the triangle kernel estimate and the bias term (4.3) agrees with (3.4). 

To compute the variance in [-6/2, b/2], we rewrite (4.1) as 

g(x) = (1/mnh){Z,i=j_,, [(m - I i 1 )(112 -xla) + (m - I i- 1 1 )(1/2 + x/6)]ni}. 
A computation similar to that in Section 3.2 reveals 

00 
~~2 1h (4.4) J Var g(x) dx = 3nh - R(f) + O 

Thus the variance term is essentially independent of m and is the same as for 
the ordinary frequency polygon. Combining (4.3) and (4.4) we have proven: 

THEOREM 2. Under the assumptions of Theorem 1, the integrated mean 
squared error of the frequency polygon of the averaged shifted histogram is given 
by 

(4.5) IMSE = (2/3nh) - (1/n)R(f) 
+ (1/144)h4(1 + (1/M2) + (9/20m4))R(f ") + 0(h/n + h5). 

4.2 FP-ASH vs. ASH. Comparing (4.5) and (3.1), we see that we have 
eliminated the 0(h2/m2) = Q(b2) term from the bias and the 0(1/nm2h) binning 
term from the variance. The remaining bias terms involving m are easily con- 
trolled with modest values of m, values smaller than required by the ASH. Next 
we evaluate statistical efficiency. It is easy to see from equation (A.1) that if we 
ignore terms of order n'1 and minimize the IMSE with respect to h, the relative 
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contribution to the optimal IMSE of the variance term is four times the bias 
term, for all densities f. Therefore, if in (4.5) we use this same h, which is a 
slightly suboptimal choice, the IMSE of the FP-ASH is greater by the factor 
1 + (1/5m2) + (9/lOOm4). For m = 1 the increase is 29% (compared to the 
optimal 27% given in Section 1.2), but for m - 5 the increase is less than 1%. 
Similar calculations for the ASH may be done for specific densities. For example, 
with 100 Gaussian data points, the increase is 164% for m = 1, but not until 
m - 13 does the increase fall below 1%. 

5. Bivariate results. Bivariate IMSE results are given below. Explicit 
multivariate IMSE results for the ASH and FP-ASH are not generally available, 
although, for large mi, we may use the fact that these estimators converge to the 
product kernel estimator. The bivariate formulae parallel the univariate results 
(3.1) and (4.5) in interesting ways and indicate that the choices of the parameters 
mx and my can be about the same as for m in the univariate case. Before stating 
the theorems, let us introduce the following notation: 

________f_( , Y ak+lf (x, y) 
Iij,kl = f( X axk'Y dxdy. 

0 0ax ay I 

THEOREM 3. Asymptotically, for the bivariate ASH, 

IMSE = 9nhXh4(1 + 2m1)(1 + 2mg) - + 1 h 2 
IMSE -ioo 00~~~~~~~ Ii.+ 

12 m I0,1 0 + 144 h+1 - 
- + 5m4)20,20 1nh 4/h 2 3\ 1 M 

1 h2i1 - + 1102,02 
+ 2xh( -101 m2 h- 22 +m M 4 I20,020+?( 12 144m) 5 ? ? 1 1 1 1 1 

+4 (~ h2 204 W 22 44h( 2 + M 4 I0,0 

+ 1h2 2 1 2 2 mm + 
1 

72 x 
2 m2 m2 2Y2 l2 M 2I02 

THEOREm 4. Asymptoticall for the bivariate FP-ASH, 

IMSE = hh1 + (bvaa - p c tri 

+ 24 h1 + 2 + I0~ 20,20 + 144 Ih( 1+ +2 I~02,02 

+ + ~2W2 M4 
h1 1 --2m)1 

1 
h2h~ 21,1 k 2m2 0,22 9 mm 

These expressions match previously obtained results for the special cases 
mx= my 1 (bivariate histogram and frequency polygon; see Scott, 1985) and 
mx= my = c (bivariate product triangle kernel estimator). One may choose 
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values of m. and my between 2-5, about the same as for m in the one-dimensional 
case. We have found similar values of mi in the FP-ASH to work with data in 
three and four dimensions. 

6. Application considerations. 

6.1 Choice of smoothing parameters and kernel. The FP-ASH is in a form 
convenient for plotting on a graphics device, namely, piecewise linear. Our 
approach in previous sections has suggested that h is fixed and known and that 
m is increased (6 decreased) in order to get as close as desired to the triangle 
kernel estimate. In practice, h is the most difficult parameter to choose. We 
advocate choosing a based on graphical considerations (visual smoothness of the 
FP-ASH) or based on a certain moderate number of bins M (say 30, 50 or 100) 
covering the sample range. This determines the bin width 3. Then look at an 
"oversmoothed" FP-ASH, that is, an FP-ASH with smoothing parameter set to 
a theoretical upper bound; see Terrell and Scott (1985). Now an oversmoothed 
frequency polygon (FP-ASH with m = 1) has (147n/2)1/5 bins of width h over 
the sample range. An oversmoothed triangle kernel estimator (ASH or FP-ASH 
with m = oo) has (30n)'1/5 bins of width h over the sample range. Hence we can 
find an effective upper bound mu, on m given by m, = M/(30n)'/5. We shall not 
discuss data-based procedures for choosing m E= [1, mJ]; see Scott and Factor 
(1981), Rudemo (1982) and Bowman (1984). Similar procedures for our estimates 
are under development. If m is much greater than 5, then adjacent bins of width 
a can be aggregated to further reduce computations required for smoothing. 
Although the multivariate oversmoothed density theory does not yet exist, such 
estimates can be approximated by assuming that the data are multivariate 
Gaussian. Epanechnikov's (1969) theory for multivariate product kernels may 
then be applied. Surprisingly, the choice of hi or mi by graphical means does not 
seem too difficult in the multivariate case, but the representation of the FP-ASH 
or any density is quite challenging beyond two dimensions. We have been able 
to construct FP-ASHs to examine data sets in one to four dimensions with 
sample sizes as large as 400,000 points in an interactive graphics environment 
and to focus on interesting representational problems; see Scott (1983) and Scott 
and Thompson (1983). 

The choice of weighting function is not critical (Epanechnikov, 1969). A 
popular choice for constructing a kernel estimate is the quartic (biweight) kernel 
K(t) = 15/16(1 - t2)2j1_,ll (t). The ASH weighting function corresponding to the 
quartic kernel is 

(6.1) wm(n) = (15m4/(16m4 - 1))((1 - (i2/m2))2 1 - m ' i m -1 

By computing finite differences over the bins of the ASH with this weighting 
function, we obtain essentially the same information about the first and second 
derivatives of the true density as with derivatives of the quartic kernel estimate. 
Therefore, we may not always wish to use the triangle weighting function. 
Estimators with higher order convergence may be obtained if we relax the 
restriction that the weighting function be nonnegative. 
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Another weighting function, which is piecewise quadratic, results if we consider 
the estimator constructed by averaging shifted frequency polygons. This may be 
useful for dealing with densities with discontinuities at boundary points as 
illustrated for negative exponential data in Scott (1985). 

We can extend the results of our theorems to general weighting functions 
satisfying (2.7). The formulae are similar to equation (A.1) for kernel estimators. 
Let Rw = , wm(i)2/m, a' = , (i/m)2wm(i)/m, and yow = w, Wm(i)wm(i - 1)/m, 
where the sums are for i = 1 - m to m - 1. 

PROPOSITION 1. Equations (3.1) and (4.5) generalize, respectively, to 

(6.2) Rw/nh + (h2/12m2)R(f') + ?Ah4(oF4 - (1/90m4))R(f") 
and 

(6.3) (1/nh) (2/3Rw + 1/3yw) + 1/4h4(o,4 + (a2 /2m2) + (49/720M4 ))R (f") 

6.2 Computational and statistical efficiency of the FP-ASH. We have not 
proven that the FP-ASH is more computationally tractable than a kernel esti- 
mate. In this section we show that the FP-ASH is identical to a kernel estimator 
that (i) uses binned data, (ii) is evaluated over a mesh and then linearly 
interpolated, and finally (iii) renormalized to integrate to one. Operation counts 
do not tell the whole story since disk I/O may be the most costly item for large 
data sets. One-pass algorithms, which are important for large multivariate data 
sets, exist for computing ordinary kernel estimates over a grid. However, if 
smoothing parameters are unknown, many passes through the data may be 
required for kernel estimates. Silverman (1982) has developed an algorithm that 
greatly reduces the work required for changing smoothing parameters for univar- 
iate Gaussian kernel estimates based on the Fast Fourier transform. The proce- 
dure provides estimates on a mesh by binning of data into between 32 and 2048 
bins; see Jones and Lotwick (1984) for some reduced error results. 

Pre-binning or rounding of data on a mesh of width 6 can mean tremendous 
memory and computational saving with very large samples. The IMSE of the 
binned kernel estimator (assuming the kernel estimator is evaluated everywhere 
and not just over a mesh) is the same as equation (A.1) except that the bias term 
is multiplied by the factor (1 + 62/12h2a2)2; see Scott and Sheather (1985), which 
follows a result of Hall (1982). For a triangle kernel and assuming h/l = m, 
this factor is (1 + 1/M2 + 1/4m4), which should be compared to the factor 
(1 + 1/M2 + 9/20m4) in (4.5) for the FP-ASH. 

In order to realize computational savings with the binned kernel estimator, 
we should evaluate the estimator only over a mesh and interpolate these values. 
If we use the same mesh as used for data binning, choose linear interpolation, 
and restrict attention to smoothing parameters h = mb, we have the following 
interesting results. Let us further restrict ourselves to kernels K supported on 
[-1, 1]. The linearly interpolated binned kernel estimator will integrate to one if 
and only if 

(1/m) >2=-m K(i/m) = f K(x) dx = 1. _. 
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This is the case for the triangle kernel (2.6) but not for most nonlinear kernels 
such as the biweight (6.1). When the interpolated binned kernel estimator fails 
to integrate to one, an obvious fix is to renormalize the estimator. However, 
further analysis of perturbations in the IMSE is not required because of the 
following easily proven result: 

PROPOSITION 2. A renormalized linearly interpolated binned kernel estimator 
over a mesh of width 3 with h = mb is identical to the FP-ASH with the same 
parameters. 

Thus we see there are no "computational or statistical gaps" between these two 
approaches and the FP-ASH answers questions about the use of binned data in 
a kernel estimator. The FP-ASH deals directly with binned data and avoids 
introducing notions of numerical interpolation error of a sampled kernel esti- 
mator. Higher-order kernel interpolation schemes will introduce negativity prob- 
lems in the tails and still involve renormalization. The FP-ASH could be modified 
to study this case. Negative estimates seem to be less desirable in the multivariate 
case. 

Computationally the FP-ASH is relatively efficient because smoothing oper- 
ations are required only at the end of the data scanning phase and are determined 
by m and the number of nonempty bins rather than the sample size. Thus 
recomputing an FP-ASH with different smoothing parameters requires only a 
modest amount of work for small values of m. 

7. Examples. Our first example deals with 63 annual snowfall accumula- 
tions in Buffalo; see Table 1 (Parzen, 1979). The sample range is 101.4, so we 
chose 3 = 1. The oversmoothed ASH corresponds to mu = 102/(30 x 63)1/5 - 22. 
In Figures 2A and 2B, we display ASHs with m = 22 and 14, respectively. Three 
bumps are suggested in both graphs; see Good and Gaskins (1980) for a lengthy 
discussion of a similar data set. The ASH becomes visibly rough for m < 10. A 
FP-ASH for these data might use 3 = 2 or 3 since fewer bins are required. 

Our second example is an FP-ASH estimate of 1000 pseudo-random points 
from an independent trivariate Gaussian density. Thirty bins were constructed 
along each axis with bi = 0.2 and mi = 5 in each dimension. Contours of the FP- 
ASH at levels 10, 35, 60, and 85% of the sample mode (0.050) are shown in Figure 
3, with darker shades of gray for higher density contours. Contours for the true 
density are concentric spheres. The slightly nonspherical shape of each contour 
is the result of sampling variation. A similar picture of the FP-ASH with mi = 3, 

TABLE 1 
Yearly snowfall in Buffalo, New York (1910-1973) in inches 

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25.0 
69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6 80.7 60.3 
79.0 74.4 49.6 54.7 71.8 49.1 103.9 51.6 82.4 83.6 
77.8 79.3 89.6 85.5 58.0 120.7 110.5 65.4 39.9 40.1 
88.7 71.4 83.0 55.9 89.9 84.8 105.2 113.7 124.7 114.5 

115.6 102.4 101.4 89.8 71.5 70.9 98.3 55.5 66.1 78.4 
120.5 97.0 110.0 
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FIG. 2A. ASH estimate of snowfall data with m =22 and 6= 1. 
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FIG. 2B. ASH estimate of snowfaU data with m = 14 and 6= 1. 
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for which the sample mode is 0.069, is very rough. The FP-ASH with mi = 4 is 
slightly rough. 

8. Discussion and conclusions. We have introduced a conceptually sim- 
ple density estimator based on averaging several different histograms of the same 
data. A direct relationship with product kernel methods has been demonstrated. 
The averaged shifted histogram has several appealing features: it is computation- 
ally simple, performs smoothing operations on the bin counts rather than the 
raw data, and may be quickly and exactly evaluated at any point in the sample 
space. This last feature has particular importance in pattern recognition where 
ordinary histograms continue to be heavily used. The computation required for 
any density estimator can be reduced by binning the data, but then approximation 
errors must be considered. The modest statistical inefficiency of the FP-ASH 
due to binning is given exactly in our theorems. 

The use of the estimated density function for examining three- and four- 
dimensional data is a data smoothing operation. For higher-dimensional data, 
we envision two distinct kinds of smoothing: dimension reduction and density 
estimation. Dimension reduction options range from classical principal compo- 
nents to modern projection pursuit algorithms (Friedman and Tukey, 1974; 
Huber, 1985); the latter are particularly powerful for non-Gaussian data. Dimen- 
sion reduction can result in a significant improvement in the signal-to-noise 
ratio, although we must be careful not to lose too much signal. Dimension 
reduction does not reduce the number of data points. Hence additional smoothing 
may be required. We believe density estimation is well-suited to this purpose. 
Our density contour representation is the same whether we have a few hundred 
or a million points. 

An interesting question is how much of each kind of smoothing to apply. 
Projection all the way to one or two dimensions is more likely to provide too 
much smoothing (loss of signal) than is projection to three or four dimensions. 
On the other hand, as the dimension increases density estimation becomes less 
efficient statistically and smoothing parameter selection involves many combi- 
nations of mi choices. Clearly the variety of possible structure with trivariate and 
quadrivariate data is much more complex and interesting than with univariate 
or bivariate data. We can only speculate whether with real data it will prove 
worthwhile to estimate the density function in five or more dimensions where 
the curse of dimensionality will be felt, or whether an appropriate projection into 
four or fewer dimensions will be sufficient. 

Finally, we note that there are interesting parallels between spectral density 
windows and ASH weighting functions and between certain digital image proc- 
essing formulae and the bivariate ASH weighting scheme. Such comparisons 
with image processing algorithms could be used to suggest how resistant ASH 
density estimates could be constructed and parallel computer architecture em- 
ployed. 

Acknowledgements. I would like to thank George Terrell, Frank Jones, 
Dick Heydorn, and Jim Thompson for their help, and also the referees for their 
careful reading and comments. 



1038 D. W. SCOTT 

APPENDIX 

THEOREM 5. For a finite-support kernel estimator (2.5) satisfying conditions 
(C3), 

IMSE = (1/nh)R(K) - (1/n)R(f) + 1/4h'4a'R(f") 
(A.1) + O[(h/n)R(f)R(f ') + h5R(f ")R(f"')] 

PROOF. We assume without loss of generality that [-1, 1] is the support of 
K. 

Ef (X) = K( h )f(t) dt = f K(w)f(x - hw) dw 

= I K(w)[f (x) - hwf '(x) + 1 h'w'f "(x - yxwhw) dw, 

where O ' yxw ' 1 using an exact Taylor's expansion for f (x - hw). Notice 
f "(x - yxwhw) is a continuous function of w. Since K is continuous over the 
interior of its (finite) support, we may use the generalized mean value theorem 
(GMVT) to obtain: 

(A.3) f w2K(w)f "(x - yx.hw) dw = f "(x - yhc) w2K(w) dw, 

where c E [-1, 1] is a particular value of w. Let yx = c-yxc; then I 7x I < 1. Hence 
(A.2) becomes 

(A.4) EfK(x) = f (x) - hMKf '(x) + 1/2h f(x - yxh) 
By assumption AK = 0. Now compute the bias contribution of the IMSE: 00 1 00 f Bias(x)2dx = -h4U4 If "(x - Yxh)2dx 
(A-5) 4 _ 

= -h h4U4 f " (X)2 dx + 0(h5 11 f " 11 2 11 f '11 2) 4 _12 

using the lemma below with X = (f ")2 which is absolutely continuous and noting 
that 

11' 111 = 11 2f "f'11 c 2 f112 I f '112< 00 
by the Cauchy-Schwarz inequality and since f ", f "' E L2. 

To compute the integrated variance, we note that 

A 1 ~,X - Xi! X Y1 
VarfK(X)= f h2EK( h x) - 2IEK(h ill 

(A.6) nh[) d J 
= ~fK(w)2f (x - hw) dw - - K(w)f (x - hw) dwl 
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Integrating the first term in (A.6) over x gives exactly 

(A.7) -n f K(w)2 dw. 

The second bracketed term in (A.6) equals 

(A.8) f (x - hwx) f K(w) dw = f (x - hwy) 
-1 

using the GMVT, where -1 < wx < 1. Therefore the second term when squared 
and integrated over x becomes 

(A.9) -- J f (x - hw)2 dx = f J (X)2 dx + O 1/ f 112 1h f ' 11 2) 

using the lemma below with k = f 2, which is absolutely continuous and noting 
that 11 (k' 111 = 11 2ff ' 111 ' 2 11 f 112 11 f ' 112 < , since f, f ' E 2. Adding (A.5), (A.7), 
and (A.9) proves the theorem and ensures that the remainder terms are bounded. 

LEMMA 1. Suppose 4 is absolutely continuous, +' E L1, and wt = w(t) is a 
measurable function onto [-1, 1]. Then 

f q(t - hwt) dt = 4(t) dt + O(h tl 4' 11I) 

PROOF. 

00 00 rt-hwt f [4 (t- hwt) - 4(t)] dt = f ft '(s) ds dt 

00 
rt+h 

<j j k'(s)Idsdt 
t= - 8=t-h 

00 
rs+h = ~ OO t h l(s)I dsdt= 2h 11 

S=-a0 t=s-h 
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