
Smoothed Histograms for Frequency Data on Irregular Intervals

David W. SCOTT and Warren R. SCOTT

Frequency tables are often constructed on intervals of irregu-
lar width. When plotted as bar charts, the underlying true den-
sity information may be quite distorted. The majority of intro-
ductory statistics texts recommend tabulating data into intervals
of equal width, but seldom caution the consequences of failing
to do so. An occasional introductory text correctly emphasizes
that area rather than frequency should be plotted. Nevertheless,
the correctly scaled density figure is often visually less informa-
tive than one might expect, with wide bins at constant height. In
many cases, the rightmost bin interval has no well-defined end-
point, making its depiction somewhat arbitrary. In this note, we
introduce a regular histogram approximation that matches the
frequencies and also minimizes a roughness criterion for visual
and exploratory appeal. The resulting estimate can reveal the
density structure much more clearly. We also formulate an alter-
native criterion that explicitly takes account of the uncertainty
in the bin frequencies.

KEY WORDS: Density approximation; Unequal bin intervals;
Penalized roughness criterion.

1. INTRODUCTION

The data snapshot feature of USA TODAY on Friday, Octo-
ber 13, 2006 displayed frequency data taken from a survey on
marriage; see Figure 1. This bar chart exemplifies the difficul-
ties with irregular intervals or bins. The first two bins are six
months wide, the third, two years wide, and the final bin width
is not specified. In addition, the percentages in the figure can-
not all be correct as the sum is only 90%. Where is the missing
10%?

A check of the original source online shows a table (not a bar
chart) with the percentages as given. But the table also provides
the raw bin counts of 181, 147, 651, and 228 for a total sample
of 1,207. Thus the first bin has a frequency of 15.0% not 5.0%
as shown, a typo which accounts for the missing 10%.
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In order to preserve areas, each bin frequency must be divided
by its bin width (in years); see Section 2. In Figure 2, we display
two proper density histograms, one with the final bin chosen to
be of width two years, and a second of width four years. These
are visually quite different from each other, but the true width of
the final bin is unknown. Comparing Figures 1 and 2, the third
bin height is much lower in Figure 2 and nearly identical to the
second bin height when properly normalized. In other words,
since the third bin is four times wider than the second bin, the
third bin height is plotted four times higher than it should be in
Figure 1.

Can a more informative histogram be constructed with such
limited data? If we make the assumption that the true underlying
density is smooth and continuous, then the answer is often yes.
We investigate this in the following.

2. A PROBABILITY HISTOGRAM
FOR IRREGULAR BINS

Let us introduce notation for a true density histogram with
M irregular intervals with endpoints t0 < t1 < ∙ ∙ ∙ < tM ; see

Figure 1. Original USA TODAY “Snapshot” front page art. The four-
bin histogram is shown as a horizontal bar chart. Note the four frequen-
cies total only 90%. c©USA TODAY. October 13, 2006. Reprinted with
Permission.
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Figure 2. Two proper adaptive density histograms of the corrected marriage data, with the first interval representing 15.0% rather than 5% of
the total. The last open-ended bin is shown with widths 2 and 4 years. However, one can cite isolated examples where this interval might be over
20 years wide, in which case the height would be very close to zero over a long interval.

Figure 3. Let the kth bin be denoted by Bk = [tk−1, tk) with
bin width denoted by hk = tk − tk−1, k = 1, 2, . . . , M . Let nk
and fk denote the sample size and relative frequency, respec-
tively, in bin Bk . Then the total sample size is n =

∑M
k=1 nk

and fk = nk/n, k = 1, 2, . . . , M, so that
∑

fk = 1. Plotting
a bar chart with heights proportional to nk/hk or fk/hk gives
the proper relative areas; however, the latter choice defines a
density histogram:

f̂ (x) ≡
fk

hk
=

nk

nhk
, x ∈ Bk

as it is easy to check that
∫

f̂ (x)dx = 1 and f̂ (x) ≥ 0.

3. AREA-PRESERVING SMOOTHED HISTOGRAM

We propose to construct an equally spaced probability his-
togram, denoted by g(x), with smaller bin width δ to provide
a superior density estimate, at least for visualization and explo-
ration purposes. Each of the hk’s should be an integer multiple
of δ. Denote the integer multiple by mk = hk/δ. For example,
with the USA TODAY data, δ could be 1/2 or 1/8 year.

Note that g(x) is defined on the interval [t0, tM ). Clearly the
total number of bins (of width δ) in g(x) equals

m ≡
M∑

k=1

mk =
tM − t0

δ
.

Denote the values of g(x) in the new narrower bins of width δ
by

g(x) ≡ g` , x ∈ I` ≡ [t0+(`−1)δ, t0+`δ) , ` = 1, 2, . . . , m.

We define g(x) to be 0 outside the interval [t0, tM ), and g` = 0
there, too.

We require that the new histogram, g(x), match the original
bin frequencies, that is,

∫

Bk

g(x) dx = fk, k = 1, 2, . . . , M. (1)

These M constraints do not uniquely determine g(x). Since we
assume the true density is continuous and smooth, we seek a
g(x) that is similarly visually pleasing. From cubic spline the-
ory, we know that curves which minimize the roughness (R)

R(g) ≡
∫ ∞

−∞
g′′(x)2 dx (2)

Figure 3. Notation for proper adaptive histogram on irregular fre-
quency intervals. The new proposed smoothed histogram uses a finer
mesh that is equally spaced with bin width δ.
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Figure 4. (left frame) The proposed frequency-matching smoothed histogram density estimate, with δ = 1/24 year (half a month). The width
of the final interval (1.625 years) was determined as the largest value where the density estimate was nonnegative. The 2 modes are at 0.43 and
2.52 years. The points on the x-axis indicate the original bin boundaries. The shaded area was obtained from bootstrap samples; see text. (right
frame) The smoothed histogram that is allowed to “float” on the left side; see text.

are smooth and visually attractive; see de Boor (1979). We wish
to use this function in our criterion.

Now our new histogram g(x) is piecewise constant so that
g′′(x) is not well-defined. However, by using finite differences
and choosing δ small, we can develop a useful approximation
for the smoothing penalty function in Equation (2). From or-
dinary calculus, (g`+1 − g`)/δ gives an approximation to the
first derivative of g(x) and (g`+1 − 2g` + g`−1)/δ

2 gives an ap-
proximation to the second derivative in bin I`. Thus our discrete
approximation to the roughness function in Equation (2) is

R(g) ≈
∞∑

`=−∞

(
g`+1 − 2g` + g`−1

δ2

)2

∙ δ , (3)

which includes the 0 levels outside [t0, tM ). Define the vector

g = (g1 g2 . . . gm)T ;

then it is easy to verify that R(g) = gT Ag, which is a quadratic
form, where A = (ai j ) is an m × m symmetric matrix of 0’s
except with aii = 6, ai(i+1) = a(i+1)i = −4, and ai(i+2) =
a(i+2)i = 1, for indices in the range from 1 to m, m − 1, and
m − 2, respectively.

The frequency constraints in Equation (1) are simple to im-
plement. For example in bin B1,

m1∑

`=1

g` ∙ δ = f1,

and for the second bin

m1+m2∑

`=m1+1

g` ∙ δ = f2 etc.

Let 0n and 1n denote column vectors of 0’s and 1’s of length n.
In matrix form, the M bin frequency constraints may be written

as







δ ∙ 1T
m1

0T
m2

0T
m3

. . . 0T
mM

0T
m1

δ ∙ 1T
m2

0T
m3

. . . 0T
mM

...
...

...
. . .

...

0T
m1

0T
m2

0T
m3

. . . δ ∙ 1T
mM








∙ g =








f1
f2
...

fM








,

(4)
say Wg = f, where W is the M × m matrix on the left of Equa-
tion (4) and f = ( f1 f2 . . . fM )T .

Thus, our proposed smoothed histogram solves the following
constrained optimization problem:

ĝ = arg min
g

gT Ag s/t Wg − f = 0M . (5)

We do not explicitly impose g ≥ 0m here. In the Appendix, we
show that

ĝ = A−1WT (WA−1WT )−1f

(assuming A−1 exists, which it does). Note that Wĝ = f as
desired.

In the left frame of Figure 4, the smoothed penalized his-
togram for the marriage data with δ = 1/24 year (half a
month) is shown. The mildly bimodal shape suggested in Fig-
ure 2 is much more strongly indicated in Figure 4, with widely
separated modes at 0.43 and 2.52 years. In order to mini-
mize R(g) with g ≥ 0, the right endpoint tM = 4.67 years
(m = 111 bins) was selected to be as large as possible so that
all g` ≥ 0; otherwise, some g` are negative. The nonnega-
tivity constraint can also be handled more elegantly using the
quadratic programming routine, quadprog, which is available
in R. Our software is available in R at the first author’s Web
site, www.stat.rice.edu/∼scottdw/TAS/ , together with the code
that generated the figures in this article.

Now it is likely that there are a handful of individual cases
beyond the right boundary, tM . But we take our estimate as only
an approximation and not overly precise in the absence of fur-
ther frequency information.
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Figure 5. Proper adaptive histogram of the 1973 Family Household
Income survey. The bin widths follow the choice by Freedman et. al.
The final bin is shown with arbitrary width of $20,000.

To examine the stability and reproducibility of our estimate,
we drew 1,000 bootstrap samples with n = 1207 from a multi-
nomial using the four sample bin frequencies. Each of the
resulting 1000 area-matching estimates was also strongly bi-
modal. The shaded area in Figure 4 shows the 25th and 75th
percentiles of these bootstrap estimates.

4. ALTERNATIVE BOUNDARY CHOICES

The choice of penalty in Equation (3) assumes that the his-
togram g(x) should smoothly approach 0 on both ends. Some-
times you may wish to let g(x) “float” on the left side. This is
achieved by starting the penalty at t0 rather than including the
zero values for t < t0. The change to A is quite simple: set the
four values a11 = 1, a22 = 5, a12 = −2, and a21 = −2 (A is
still invertible). If the right end is to “float”, then set am,m = 1,
am−1,m−1 = 5, am,m−1 = −2, and am−1,m = −2. Or if you
want both ends to float, make both sets of changes. (However,
A is no longer invertible. A more general solution is given in
the Appendix.)

The right frame of Figure 4 shows the estimate with the left
end “floating.” This estimate spikes at the origin. But intuitively,
not that many individuals elope on the first day they meet, and
thus we prefer the left frame in Figure 4.

5. THE 1973 HOUSEHOLD INCOME EXAMPLE

One introductory textbook that emphasizes the importance of
area versus frequency is Statistics by Freedman et al. (1978).
As an example, they consider the 1973 household income from
the Department of Commerce publication, Current Population
Report Series P-60 #97 (available online). The bin boundaries
(in $1000’s) are {0, 1, 2, 3, 4, 5, 6, 7, 10, 15, 25, 50,> 50} and

frequencies (in percentages)

fk = (1.1, 1.8, 3.2, 4.1, 4.5, 4.6,

4.8, 14.9, 25.5, 26.2, 8.3, 1.0)T

based upon a sample of approximately 40,000 according to the
authors; see Figure 5. Choosing δ = $500, Figure 6 displays
our smoothed histogram estimate (with the right most end point
chosen to keep ĝ` ≥ 0). Again a bimodal feature is suggested.
Observe that the estimates seems a little rough for x < $15K
due to more noise in the narrow bins.

Exactly matching bin frequencies does not make good sta-
tistical sense if their accuracies do not warrant it. In the next
section, we propose an alternative criterion that works well in
this setting.

6. SMOOTHED HISTOGRAM FOR NOISY
FREQUENCIES

If M is large and/or n is small, then some of the frequencies
fk are likely to be much more accurate than others. If the sample
size is known, then var( fk) = fk(1− fk)/n. Let V be the M×M
diagonal matrix with these variances.

Rather than insisting Wg = f exactly, we allow a discrepancy
of (Wg−f)T V−1(Wg−f) so that the ĝ` will more closely match
frequencies that are more accurate than those that are not. We
still wish to enforce smoothness by augmenting with the same
roughness penalty. Our new criterion becomes

ĝ = arg min
g

(Wg − f)T V−1(Wg − f) + λgT Ag, (6)
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Figure 6. The frequency-matching penalized histogram shows an in-
teresting bimodal structure. However, the estimate for x < $15, 000
reveals that the noise in the bin frequencies should not be ignored. The
right endpoint was again chosen as the largest value where the estimate
is nonnegative.
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Figure 7. The second formulation of the penalized histogram that ex-
plicitly takes into account the noise in the interval frequencies. The
basic structure is identical to that in Figure 6, but is visually superior.

where λ is a regularization or penalty parameter. We have only
one overall constraint, namely that g(x) integrate to one, which
may be expressed as gT 1m = 1/δ.

The solution to this problem is also given in the Appendix.
An example for the income data is shown in Figure 7. Notice
how the visual roughness for x < $15K has been removed.

We initially chose values for the penalty λ interactively by
eye. Rudemo (1982) described a cross-validation algorithm for
histograms,

λ̂ = arg min
λ

∫
ĝλ(x)2 dx −

2

n

n∑

i=1

ĝλ,−i (xi ) , (7)

where ĝλ,−i (xi ) is the smoothed histogram estimate with
penalty parameter λ based on a sample of size n − 1 with xi
deleted, then evaluated at x = xi . Note that since ĝλ,−i (x) is
constant over each bin of width δ, ĝλ,−i (xi ) is identical for all
xi in the same bin. Therefore, the second term in Equation (7)
simplifies greatly. However, Equation (7) requires counts for the
bin width δ, which we do not have. Instead, we tried using an
average of the penalized histogram over the original bin widths
hk , and this gave very similar choices to our subjective ones.
The value used in Figure 7 was λ = 105.3.

7. DISCUSSION AND RELATED WORK

In this note, we have found a useful histogram approxima-
tion when the raw data are frequencies from bins of unequal
width, and when the final bin width is unknown. While a den-
sity histogram is technically correct and superior to the incor-
rect bar chart such as that displayed in the USA TODAY feature,
our smoothed area-matching histogram can provide a superior
estimator for exploratory and visual understanding of the true
underlying density. We were able to gain resolution by making

two assumptions: the true density should be smooth, and the
new smaller bins should exactly combine to the larger original
bins. Since matching bin frequencies does not uniquely specify
an estimator, we found the histogram-like estimator that mini-
mizes a discrete version of the penalty function commonly used
to derive cubic splines. We also introduced a variation on the
area-preserving estimator that accounts for noise in the bin fre-
quencies. This version does not exactly match bin frequencies,
but trades off the discrepancy against the same penalty function,
while constraining the estimator to integrate to one. An approxi-
mation to a cross-validation function is introduced to help guide
the choice of the weight on the penalty function.

These smoothed histograms were applied to two datasets.
With the marriage and income datasets, we have been able
to turn coarse histograms with ill-defined right endpoints into
more informative histograms that are bimodal. We believe these
bimodal features are real, but as Wainer (2006) has noted, some
irregular meshes may result in artifacts, or may miss smaller
features.

We briefly review other work that led us to propose the two
estimators investigated in this note. The first explicit results on
optimal histograms with equally spaced bin widths were given
by Scott (1979) and Freedman and Diaconis (1981). Extensive
work on data-based versions were surveyed by Scott and Terrell
(1987) and Wand (1997). Determining an optimal data-based
irregular mesh is much more difficult in practice than finding
an optimal fixed-width mesh. Simple transformation seems a
good strategy to employ at this time. For example, a version of
Figure 7 with the data transformed to a log-income scale is also
bimodal, but the right-hand endpoint corresponds to $144,000
(not shown). This density is nearly symmetrical.

There is an extensive literature on area matching and pe-
nalized density estimation, which we briefly review. Most ap-
proaches require complete rather than binned data. Boneva
et al. (1971) described a continuous spline with first-derivative
penalty, which matches the bin areas of an equally spaced his-
togram. Matching areas between selected sample percentiles
with cubic splines was described by Scott (1979, pp. 177–179).
Minnotte (1996) defined a frequency polygon that matches reg-
ular histogram frequencies in each bin. Scott and Sagae (1997)
matched not only frequencies but also other bin moments with
low-order polynomials. By contrast, our estimate is explicitly in
the form of a histogram.

Penalized density estimation also has an interesting history.
Good and Gaskins (1980) used penalized likelihood to find
bumps. Scott et al. (1980) used a discrete penalty and maximum
likelihood to find a histogram-like estimator. But most work
has focused on the use of spline approximations with various
penalties on maximum likelihood: Wahba (1981) penalized the
density itself; Kooperberg and Stone (1991) focused on the log-
density; and Eilers and Marx (1996) introduced the P-spline by
defining their penalty not on the density but on its spline coef-
ficients. These are representative of likelihood-based methods.
One interesting variation is the linear estimator of Terrell (1990)
that adds a penalty to the criterion of Rudemo (1982) given in
Equation (7).

Our second estimator is close in spirit to the density estimator
given by Eilers and Marx (1996), who viewed density estima-
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tion as a regression smoother of a very rough histogram with
Poisson errors. Indeed, our estimator could find more general
use if the raw data are bin counts of fixed width δ, and if δ is
smaller than the optimal bin width. The calibration parameter
for our second estimator is the penalty weight, λ, rather than δ.

APPENDIX A: SOLUTION DERIVATIONS

The solution of all our constrained optimization problems in-
volve finding a stationary point of a general quadratic function
f (x) = xT Ax + xT b + c, where A is a p × p symmetric ma-
trix. The gradient vector, ∇x f (x), contains all p of the partial
derivatives, ∂/∂xk , k = 1, . . . , p. It is straightforward to show
that

∇x f (x) = 2Ax + b .

For example, ∂/∂xk(xT b) = ∂/∂xk(
∑

i xi bi ) = bk . So
∇x(xT b) = (b1 b2 ∙ ∙ ∙ bp)

T = b.
For the first constrained problem given in Equation (5), we

form the Lagrangian (with Lagrange multiplier γγγ ∈ <M for the
M constraints)

L(g, γγγ ) = gT Ag + γγγ T (Wg − f) ,

or, equivalently, gT Ag+gT WT γγγ − fT γγγ , when convenient. The
solution, ĝ, solves the pair of vector equations

∇gL(g, γγγ ) = 2Ag + WT γγγ = 0m (A.1)

∇γγγ L(g, γγγ ) = Wg − f = 0M . (A.2)

If A is invertible, then Equation (A.1) implies

ĝ = −
1

2
A−1WT γγγ .

Substituting into Equation (A.2) and solving gives γγγ =
−2(WA−1WT )−1f. Finally,

ĝ = A−1WT (WA−1WT )−1f .

Note that Wĝ = WA−1WT (WA−1WT )−1f = f, as desired.
If the matrix A is not invertible, then ĝ is obtained by mul-

tiplying Equation (A.1) by W, adding to Equation (A.2), and
solving for γγγ . Then

ĝ = [P + 2(I − P)A]−1 WT (WWT )−1f ,

where P = WT (WWT )−1W.
For the second constrained problem given in Equation (6)

with area constraint gT 1m − 1/δ = 0, the Lagrangian is (with
single Lagrange multiplier γ )

L(g, γ ) = (Wg−f)T V−1(Wg−f)+λ∙gT Ag+γ (gT 1m −1/δ) .

The stationary point is found by solving

∇gL(g, γ ) = 2WT V−1(Wg − f) + 2λAg + γ 1m = 0m
(A.3)

∇γ L(g, γ ) = 1T
mg − 1/δ = 0 . (A.4)

Multiply Equation (A.3) by 1T
m , add to twice Equation (A.4),

and solve for the Lagrange multiplier γ . Substituting back into
Equation (A.3), and solving for g gives

ĝ =
[
(I −

J

m
)(WT V−1W + λA) −

J

m

]−1

×
[
(I −

J

m
)WT V−1f +

1m

mδ

]
,

where J is the m × m matrix 1m1T
m .

[Received August 2007. Revised March 2008.]
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