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Statistical Computing and Graphics 
Violin Plots: A Box Plot-Density Trace Synergism 

Jerry L. HINTZE and Ray D. NELSON 

Many modifications build on Tukey's original box plot. A 
proposed further adaptation, the violin plot, pools the best 
statistical features of alternative graphical representations 
of batches of data. It adds the information available from 
local density estimates to the basic summary statistics in- 
herent in box plots. This marriage of summary statistics and 
density shape into a single plot provides a useful tool for 
data analysis and exploration. 

KEY WORDS: Density estimation; Exploratory data 
analysis; Graphical techniques. 

1. INTRODUCTION 

Many different statistics and graphs summarize the charac- 
teristics of single batches of data. Descriptive statistics give 
information about location, scale, symmetry, and tail thick- 
ness. Other statistics and graphs investigate extreme obser- 
vations or study the distribution of data values. Diagrams 
such as stem-leaf plots, dot plots, box plots, histograms, 
density traces, and probability plots give information about 
the distribution of values assumed by all observations. 

The violin plot, introduced in this article, synergistically 
combines the box plot and the density trace (or smoothed 
histogram) into a single display that reveals structure found 
within the data. The introduction of this new graphical tool 
begins with a quick overview of the combination of the box 
plot and density trace into the violin plot. Then, three illus- 
trations and examples show the advantages and challenges 
of violin plots in data summarization and exploration. 

2. COMPONENT PARTS OF VIOLIN PLOTS 

The violin plot, as depicted in Figure 1 and implemented 
in NCSS (1997) statistical software, combines the box plot 
and density trace into one diagram. The name violin plot 
originated because one of the first analyses that used the 
envisioned procedure resulted in a graphic with the ap- 
pearance of a violin. Violin plots add information to the 
simple structure of the box plot that Tukey (1977) initially 
conceived. Although these original graphs are easily drawn 
with pencil and paper, computers ease subsequent modifi- 
cations, refinements, and computation of box plots as dis- 
cussed by McGill, Tukey, and Larsen (1978); Velleman and 

Hoaglin (1981); Chambers, Cleveland, Kleiner, and Tukey 
(1983); Frigge, Hoaglin, and Iglewicz (1989), and others. 

Box plots show four main features about a variable: cen- 
ter, spread, asymmetry, and outliers. As an example, con- 
sider the box plot in Figure 1 for the data published by 
Hamermesh (1994). The ASA Statistical Graphics Section's 
1995 Data Analysis Exposition analyzes these data, which 
report compensation of professors from all academic ranks 
in the United States. The labels in the diagram identify the 
principal lines and points which form the main structure of 
the traditional box plot diagram. As shown, the violin plot 
includes a box plot with two slight modifications. First, a 
circle replaces the median line which facilitates quick com- 
parisons when viewing multiple groups. Second, outside 
points which are traditionally classified as mild and severe 
outliers, are not identified by individual symbols. 

The density trace supplements traditional summary statis- 
tics by graphically showing the distributional characteristics 
of batches of data. One simple density estimator, the his- 
togram, displays the distribution of data values along the 
real number line. Weaknesses of the histogram caused Tapia 
and Thompson (1979), Parzen (1979), Silverman (1986), 
Izenman (1991), and Scott (1992) to propose and summarize 
numerous alternative density estimators. One of these alter- 
natives is the density trace described in Chambers, Cleve- 
land, Kleiner, and Tukey (1983). Defining the location den- 
sity d(xlh) at a point x as the fraction of the data values 
per unit of measurement that fall in an interval centered at 
x gives 

d(x h) h i(1) 
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Figure 2. Comparison of Box Plots and Violin Plots fo Known Distri- 
butions. (a) Box plots; (b) violin plots. 

where n is the sample size, h is the interval width, 
and 6i is one when the ith data value is in the interval 
[x - h/2, x + h/2] and zero otherwise. In order to plot the 
density trace, first select a value for h and then compute 
d(xlh) on a dense grid of equally spaced x values. Connect 
the d(xlh) by lines. The shape of the d(xlh) curve is essen- 
tially driven by the interval length, h. It is very smooth for 
large values of h, and "wiggly" for small values. 

Unfortunately, several density traces shown side by side 
are difficult to compare. Contrasting the distributions of sev- 
eral batches of data, however, is a common task. In order to 
add information to the box plot and still make comparisons 
possible, Benjamini (1988) suggested "opening the box" of 
the box plot. He makes the width of the box proportional 
to the estimated density. The violin plot builds on the Ben- 
jamini proposal by combining the advantages of box plots 
with density traces. 

The violin plot, as shown in Figure 1, combines the box 
plot with density traces. The density trace is plotted sym- 
metrically to the left and the right of the (vertical) box plot. 
There is no difference in these density traces other than the 
direction in which they extend. Adding two density traces 
gives a symmetric plot which makes it easier to see the 
magnitude of the density. This hybrid of the density trace 
and the box plot allows quick and insightful comparison of 
several distributions. 

3. SPECIFICATION OF INTERVAL WIDTH 

As with other density estimators, achieving an accept- 
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able density trace requires experience and judgment in de- 
termining the appropriate amount of smoothing. As with 
the selection of the bin width in the histogram, the inter- 
val width h, which is usually specified as a percentage of 
the data range, must be selected. Experience suggests that 
values near 15% of the data range often give good results. 
The choice of h, however, must be tempered by the size of 
the sample. The density trace is subject to the same sample 
size restrictions and challenges that apply to any density 
estimator. For small data sets, too small a value for h gives 
a wiggly density trace that suggest features that are simply 
artifacts of the individual data points. The oversmoothed 
density estimate that results from too large h values gives 
the illusion of knowing the shape of the distribution, while 
in reality the data set is too small for any conclusions. As 
a rule of thumb based on practice, the density trace tends 
to do a reasonable job with samples of at least 30 observa- 
tions. Even with sample sizes of several hundred, however, 
choosing too large a value for h causes the density trace to 
oversmooth the data. In general, values of h greater than 
40% of the range usually result in oversmoothed densities, 
while values less than 10 percent of the range result in un- 
dersmoothed densities. Hence, percentages between 10 and 
40 percent are recommended. 

4. ILLUSTRATIONS AND APPLICATIONS 
With the addition of the density trace to the box plot, 

violin plots provide a better indication of the shape of the 
distribution. This includes showing the existence of clusters 
in data. The density trace highlights the peaks, valleys, and 
bumps in the distribution. Three applications and examples 
of violin plots illustrate these advantages. The first example 
demonstrates the ability of violin plots to distinguish among 
the shapes of known distributions. The second highlights 
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Figure 3. Additional Information in Violin Plots. Two examples from 
the density estimation literature: (a) annual snowfal for Buffalo. N't: 
19101972; (b) Old Faithful eruption length. 
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Figure 4. Exploring Data with Violin Plots. Total compensation data 
from ASA analysis competition. (a) Compensation of all professors by 
university classification; (b) total compensation by academic rank. 

the ability to detect bumps or clusters of data. The third 
shows their potential in exploring for structure and pattern 
in the academic compensation data used previously in the 
illustration of the components of violin plots. The values for 
the interval widths h are chosen using personal judgment 
from values from within the recommended 10 to 40 percent 
interval. These examples establish the potential of violin 
plots in data analysis and exploration. 

4.1 Comparison of Known Distributions 
Consider first the ability to detect general shapes for dis- 

tributions of data. Figure 2 depicts box plots and violin 
plots for random samples of 10,000 simulated observations 
drawn from three different known distributions. The three 
distributions share identical location and scale characteris- 
tics as measured by the median and interquartile range. The 
first is a bimodal distribution with modes at -5 and 5 and 
range between -10 and 10. The second is a uniform distri- 
bution on the interval [-10, 10]. The third is a normal distri- 
bution N(O, 54.95). The box plots in Figure 2(a) reflect the 
fact that all three have the same median and interquartile 
range. 

As expected, the density trace accurately reveals the 
shape of the distribution from which the random samples 
are drawn. The violin plot for the bimodal distribution 
clearly shows the twin peaks of the known distribution. 
Unfortunately, box plots cannot differentiate between the 
shapes of the bimodal and uniform distributions. The box 
plots do, however, show that the normal distribution differs 
from the others as it does have a larger range. 

These plots seem to indicate that since the mass of the 
bimodal plot is less than the normal plot, the bimodal plot 
is based on fewer observations. This is a weakness of this 
implementation of the violin plot, which adjusts the density 
traces so that their maximum heights are equal. This allows 
a direct comparison of the shapes, but removes the visual 
impact of sample size. A variation of this implementation 
would keep a uniform scaling of the density traces. 

4.2 Density Estimation Examples 
Clusters of data appear as bumps in density estimators. 

Box plots often do not alert analysts to their existelnce. Two 
examples from the density estimation literature clearly il- 
lustrate this ability. First, Parzen (1979) and Scott (1992) 
used annual snowfall data for Buffalo, New York for 1910- 
1972 to show the value of nonparametric density estima- 
tion. The violin plot in Figure 3(a) illustrates the additional 
insights available through density estimators that the basic 
box plot does not reveal. The second example in Figure 
3(b), which uses data previously considered by Silverman 
(1986) and Scott (1992), shows the bimodal nature of Old 
Faithful eruption lengths. Once again, the violin plot clearly 
adds significant insight about the distribution of the process 
generating the data. 

4.3 Academic Compensation 
The information that violin plots add to box plots in- 

creases the potential of these tools when used in data ex- 
ploration. As an example of the value of violin plots, con- 
sider the diagrams in Figure 4 for data published by Hamer- 
mesh (1994). The graphics in Figure 4(a) summarize total 
compensation of all professors for three different classifica- 
tions of colleges and universities. The first category includes 
institutions with a significant level of doctoral-level edu- 
cation. The second encompasses institutions with diverse 
post-baccalaureate programs but which do not have a sig- 
nificant level of doctoral programs. The colleges and uni- 
versities in the third category focus their primary activity on 
undergraduate baccalaureate-level education. The bumps in 
the doctoral level and post undergraduate violin plots sug- 
gest that some universities in each of these categories might 
have compensation characteristics which distinguish them 
from other members of the general group. 

Figure 4(b) shows the distribution of total compensation 
for institutions in all three categories by academic rank. 
All three of the categories appear to be somewhat posi- 
tively skewed with the skewness increasing with the aca- 
demic rank. Comparison of the medians gives the expected 
increase in compensation with the higher academic rank. 
An interesting bulge grows in the upper tail of the distri- 
butions as the academic rank increases. In an exploratory 
analysis, the violin plots point to the next question which 
might investigate the characteristics of the institutions in 
these clusters. 

5. SUMMARY AND CONCLUSIONS 
Individually, box plots provide SUCCinlCt summaries of 

data. By themselves, density traces reveal important infor- 
mation about the distribution of data. The synergistic com- 
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bination of the box plot and the density trace allows much 
of the information from each to be displayed in one plot. 
This single plot structure makes comparisons of distribu- 
tional factors of several variables much easier. Three dif- 
ferent illustrations show that violin plots retain much of 
the information of box plots and add information about the 
shape of the distribution not obvious in box plots. Their 
ability to detect clusters or bumps within a distribution is 
especially valuable. 

[Received February 1997. Revised November 1997.] 
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