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STATISTICAL COMPUTING 
AND GRAPHICS 

Data-Based Choice of Histogram Bin Width 
M. P. WAND 

The most important parameter of a histogram is the bin 
width because it controls the tradeoff between presenting 
a picture with too much detail ("undersmoothing") or too 
little detail ("oversmoothing") with respect to the true distri- 
bution. Despite this importance there has been surprisingly 
little research into estimation of the "optimal" bin width. 
Default bin widths in most common statistical packages 
are, at least for large samples, quite far from the optimal 
bin width. Rules proposed by, for example, Scott lead to 
better large sample performance of the histogram, but are 
not consistent themselves. In this paper we extend the bin 
width rules of Scott to those that achieve root-n rates of 
convergence to the L2-optimal bin width, thereby provid- 
ing firm scientific justification for their use. Moreover, the 
proposed rules are simple, easy and fast to compute, and 
perform well in simulations. 

KEY WORDS: Binning; Data analysis; Density estima- 
tion; Kernel functional estimator; Smoothing parameter se- 
lection. 

1. INTRODUCTION 

The histogram is the oldest and most popular tool for 
graphical display of a univariate set of data. It is taught in 
virtually all elementary data analysis courses, and is avail- 
able in most statistical computing packages. 

An important parameter that needs to be specified when 
constructing a histogram is the bin width. This is simply 
the length of the subintervals of the real line, sometimes 
called "bins," on which the histogram is based. It is not very 
difficult to see that the choice of the bin width has an enor- 
mous effect on the appearance of the resulting histogram. 
The choice of a very small bin width results in a jagged 
histogram, with a separate block for each distinct observa- 
tion. A very large bin width results in a histogram with a 
single block. Intermediate bin widths lead to a variety of 
histogram shapes between these two extremes. Ideally, the 

bin width should be chosen so that the histogram displays 
the essential structure of the data, without giving too much 
credence to the data set at hand. 

Scott (1992, p. 48) gave an interesting historical account 
of bin width selection. The earliest published rule for select- 
ing the bin width appears to be that of Sturges (1926). As 
Scott points out, Sturges's proposal is more of a number-of- 
bins rule rather than a bin width rule itself, but essentially 
amounts to choosing the bin width 

- range of data 
1 + log2 n 

where n is the sample size. Well-established theory (e.g., 
Scott 1992) shows that this bin width leads to an over- 
smoothed histogram, especially for large samples. However, 
Sturges's rule, or variations of it such as that proposed by 
Doane (1976), is often used in statistical packages as a de- 
fault. The default bin width used by the popular languages S 
and S-PLUS is a modification of Sturges's rule that ensures 
nice break points between the bins. 

It could be argued that this situation is somewhat un- 
fortunate because inexperienced data analysts might miss 
important features in their data sets (an example is given 
in Section 5.2). Acceptance of this viewpoint implies that 
default bin widths should be "more scientific," driven by 
some sort of optimal estimation theory. At the same time 
one should not lose sight of the simplicity of the histogram, 
and the advantages of having the choice of the bin width 
kept relatively simple as well. The purpose of this paper is 
to develop rules that aim to achieve a balance between good 
mathematical and practical performance and simplicity. 

It has been known for some time (e.g., Smirnov 1950) 
that, with respect to Lp norms, the optimal rate of decay 
of the bin width is n-1/3. However, it was not until the 
relatively recent work of Scott (1979) and Freedman and 
Diaconis (1981) that the asymptotic effect of the bin width 
on the mean L2 error, or mean integrated squared error 
(MISE), was fully understood. This theory has lead to the 
proposal of several rules of the form 

h = Cn- 1/3 

for some statistic C. Worthy of special mention is Scott's 
(1979) normal reference rule 

h 3.49rJn- 1/3 
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where &, is an estimate of the standard deviation, so named 
because it is based on calibration with the normal distribu- 
tion with variance a2. Modifications of this idea to allow 
for varying degrees of skewness and kurtosis have also been 
developed by Scott, and were presented and studied in sec- 
tion 3.2.3 of Scott (1992). 

Although each of these n-1/3 rules provides about the 
right number of bins for each situation, it must be recog- 
nized that they are only rough approximations to the MISE- 
optimal bin width and with no large sample consistency 
properties. It is interesting to note that, although there is a 
huge body of theory devoted to optimal estimation of com- 
mon parameters, such as those based on moments, very little 
exists for estimation of the MISE-optimal bin width (and 
even less for bin widths that are optimal for other criteria). 
For example, is it possible to estimate the optimal bin width 
with root-n consistency, just as with regular parameters? 

We propose and describe an extension of the rules of 
Scott that does have good consistency properties. In fact, 
we are able to present a relatively simple rule that achieves 
the best possible asymptotic performance, in terms of both 
rates of convergence and constant coefficient, to the MISE- 
optimal bin width. Although this rule is unbeatable from a 
theoretical standpoint, it does not necessarily follow that it 
is the best to use in practice because of the delicate asymp- 
totics involved, so simpler rules with only slightly inferior 
theoretical performance are also considered. 

Apart from exhibiting good convergence properties, our 
class of rules has the advantage of being simple and fast to 
compute, which is in keeping with the "rough-and-ready" 
nature of the histogram itself. 

Full specification of a histogram also requires the posi- 
tioning of the bins once a bin width has been decided upon. 
This choice can also have a marked effect on the resulting 
histogram; see, for example, figure 1.3 of Wand and Jones 
(1995). There does not seem to be a sensible data-based 
way of choosing the positioning the bins, so in practice it 
is recommended that the user look at several "shifted" his- 
tograms with the same chosen bin width. 

The proposed bin width rules require considerably more 
computational effort than that required for a histogram, with 
the amount of work roughly equivalent to the construction 
of a kernel density estimate. As one of the reviewers has 
pointed out, an obvious question that arises is: Why would 
one go to all that computational trouble to use a histogram 
instead of a kernel density estimate? It is certainly true that 
more experienced statisticians might prefer to bypass the 
histogram completely and use a more sophisticated density 
estimator, such as one based on a kernel. Nevertheless, it 
must be recognized that the overwhelming majority of den- 
sity estimates obtained in practice are of the histogram type, 
usually by a novice or part-time statistician using a com- 
puter package with a default bin width. Users such as these 
usually understand the construction of the histogram itself, 
but the bin width choice is almost always treated as a "black 
box." Clearly, it is imperative that this black box produces 
as good an answer as possible. It is hoped that this research 

will provide a better black box than those currently used 
in packages, and perhaps inspire the development of even 
better bin width selectors. 

Section 2 contains the basic methodology, followed by a 
study of theoretical performance in Section 3. Implemen- 
tation details are given in Section 4, numerical examples 
are given in Section 5, and concluding remarks are given in 
Section 6. Proofs are deferred to the Appendix. 

2. METHODOLOGY 

Let Xl,. . , X, be a real-valued random sample having 
density f. The histogram estimator of f (x), based on a par- 
tition of the real-line into bins Bj of width h, is given by 

- 
number of Xi's in B x 

fJ(x; ) = nh I xcEBj. 

Before we can set out to select the bin width h scientifically 
we need some mathematical optimum at which to aim. For 
reasons of tractability and simplicity we will take the opti- 
mal bin width to be hMISE, the bin width that minimizes 

MISE{f(.; h)} = E f(x;h)-f(x dx. 

If f is sufficiently regular, then as h = hn - 0 and nh -* oo, 
we have 

hmlJS E 2n 
as nr oo (2.1 ) 

(Scott 1979; Freedman and Diaconis 1981) where 

E{f(r)(X)} I j f(r)(x)f(x) dx, r even. 
-00 

This does not solve our problem for estimation of hMISE, 

but helps us because of the fact that high-quality kernel- 
type estimators of O-r exist. If L is a sufficiently smooth 
symmetric, unimodal probability density function, then a 
consistent estimator for O-r is 

n n 

./r(9) = n-2-r-l ES - Xj)/g} (2.2) 
i=1 j=1 

(Hall and Marron 1987; Jones and Sheather 1991) for some 
positive parameter g, usually referred to as a "bandwidth." 
Therefore, in view of (2.1) hMISE can be estimated by 

1/3 

-2 (g)nJ 

However, we now have a new problem: the choice of g. 
With respect to E[{f 2(g) - 0b2}]2, the asymptotically (as 
g - 0 and n-lg-5 > 0) optimal g is 

2L (2)(0) 1/5 

9MSE,2 /'2 (L)>4nJ 

(Jones and Sheather 1991), where IaJk(L) f ukL(u) du. 
But because YMSE,2 depends on 1b4, we have to estimate this 
functional to obtain a practical rule. In general, the optimal 
bandwidth 9MSE,r for estimation of fV-r depends on f/r?2, 

so this process can be continued indefinitely, but eventually 
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a "rough" estimate of a higher order lr will be required. 
A common approach to this problem is the replacement of 
f by the normal density with variance &2 where &, is an 
appropriate estimate of scale (see, e.g., Sheather and Jones 
1991). Such an estimate of /r is called a normal scale es- 
timator, and we will denote this by 1,'NS. A useful result 
is 

^NS (_I)r/2r 
Yr (26-)r+l(r/2) !7l/2 

A popular choice for &, is 

6- = min{s, IQR/1.349}, (2.3) 

where s is the sample standard deviation and IQR is the 
interquartile range. The factor 1.349 ensures that &, is con- 
sistent for oa when the data are normal. More sophisticated 
choices for &, are possible: see, for example, Janssen, Mar- 
ron, Veraverbeke, and Sarle (1995). Alternatively, one could 
obtain an initial estimate of l/-r using the skewness-kurtosis 
idea of Scott (1992, pp. 56-57). 

The number of stages I of functional estimation before 
a rough estimate is used is another variable that needs to 
be specified. This means that we actually have a family of 
plug-in rules indexed by 1. Let h1 denote the I-stage plug-in 
rule with initial estimates found using a normal scale rule. 
Examples of h, are the following: 

The zero-stage rule ho: 

ho _N(s) n (247r1/2n)1/3r) 3.496n-1/3 . 

2 

Note that h0 is simply the normal scale bin width selection 
rule of Scott (1979). 

The one-stage rule h1: 

^ ( 6 ] ~~1/3 

- { 2(gii)n 

where 

911 = [-2L(2) (0)/{ft2 (L) > Nsn}] 1/5. 
A~~~~~ 

The two-stage rule h2: 

^ [ ~6 1/3 

l-02(921 )nX 

where 

921 = [-2L(2) (0)/{M A2(L) 4(922)nr}]1/5 

and 

922 [-2L(4) (O) /{f4 (L)~L4NSn}] 1/7 

These rules belong to what is usually called the "plug-in" 
family of smoothing parameter selectors because they are 
based on plugging in estimates of unknown quantities. For 
the bandwidth selection problem in kernel density estima- 
tion this idea dates back to Woodroofe (1970), and recently 

has been popularized by several authors including Park and 
Marron (1990), Sheather and Jones (1991), Chiu (1991), 
Hall, Sheather, Jones, and Marron (1991), and Engel, Her- 
rmann, and Gasser (1995). 

3. THEORETICAL PERFORMANCE 

A reward for our "scientific" approach to the selection 
of h is very good theoretical performance, at least if I is 
sufficiently high. Obviously, ho does not converge to hMISE 

because it does not use a consistent estimate of 02. How- 
ever, for I > 1 we have the following. 

Theorem. If (A.1) and (A.2) in the Appendix are satis- 
fied, then 

n / (hi/hMIsE - 1) ->P D, (3.1) 

where 

D I V,-1 {82(L)3 L( )(2) }1/5 

and for I> 2 

n1/ (h1/hMIsE -1) D N(0,o(J1), (3.2) 

where 

~~~ ~~~-2 rr55 2/ 

2PI = 1 2 2 [_ { / (L")2 } 

x 0 4 var{f"(X)}] 

Therefore, provided that at least two stages of functional 
estimation are used, our rules achieve a root-rn relative rate 
of convergence. 

The f-1r2 convergence rate of hl/hMIsE -21, for I > 2 
is the best possible (Hall and Marron 1991), but does not 
quite reach the lower bound on the asymptotic variance 

2 v)-2 _ 2 

LB = g var{f (X)}/[E{f (X)}]2 (3.3) 

(by extension of Fan and Marron 1992). In fact, one can 
achieve this best possible variance by simply replacing L by 
a fourth-order kernel L[v] (i.e., satisfying f u2LX ] (u) du3 
0) and I > 2. For example, the appropriate fourth-order 
version of h2, which we will denote by h[41, is given by 

h[4] 6 
2 4 

{ 02(921 )n 

where 

92 - [ 24L[4]) (0)/{Ir4(L[4] )6(4\ )ni}] 1/7 

and 

922 [ [24L[6] (0)/{/8 (L(4] )/NoSr}]1/11 
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(a) Density # 1 (b) Density # 3 

-.0 Level. .0 01 0.5 0200 02 04 06 

cm ~ - LevelO 1 

Level2 c 
-------- S-PLUS / 

C\ 
\ 

-0.10 -0.05 0.0 0.05 0.10 0.15 0.20 0.0 0.2 0.4 0.6 

1og0O(hhat)-1og1O(hMISE) 1og0O(hhat)-1og1O(hMISE) 

(c) Density # 4 (d) Density # 6 

0.0 0.2 0.4 0.6 0.8 1.0 -0.10 -0.05 0.0 0.05 0.10 

logl O(hhat)-logl O(hMISE) logl 0(hhat)-logl O(hMISE) 

Figure 1. Graphical Summary of Simulation Results for n = 500. 
Kernel density estimates of 500 log 10 (h/) - log 10 (hMISE) values; I = 0, 
1, 2. The average bin width chosen by S-PLUS is shown by a vertical 

dotted line. 

For this rule it can be shown that, under sufficient smooth- 
ness assumptions on f, 

n1/2(h 4]/hMISE - 1) -D N(O, UB). 

This means that h241 has the best asymptotic performance 
among all possible bin width selectors (Fan and Marron 
1992). However, the delicateness of the asymptotic argu- 
ments by which this result is obtained means that "best" 
practical performance is not guaranteed. Moreover, the ex- 
tra complexity and loss of interpretability of higher order 
kernels makes h24 less attractive than the rules h, based on 
nonnegative kernels. 

4. IMPLEMENTATION 

One of the main obstacles with practical implementation 
of the bin width selectors proposed in the previous section 
is that they depend upon estimators of the form (2.2) which, 
for even moderate sample sizes, can be very expensive to 
compute. One simple way around this is to replace Pr(g) 

by its binned approximation. Let 

min(Xi) = 1 < G2 < ...< GM = max(Xi) (4.1) 

be an equally spaced grid of width 6 = (GM - G1)/(M- 1) 
over the range of the data. Then the linear binned approxi- 
mation to Vr(g) is 

M (M 

V)r (g) = n E E cj,;, K j |c;. (4.2) 
j=1 /j'=I 

Here 
n 

i=l1 

[with x+ max(O, x)] is the count at grid point Gj and 

,()=g-r-l1L(r)(6j/g), IjI v...vM (4.4) 
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The advantage of l/-r(g) is that it involves only 0(M) eval- 
uations of L(r), as opposed to the 0(n2) kernel evaluations 
required by ?/)r(9). This makes it much faster to compute. 
Results of Gonzalez-Manteiga, Sanchez-Sellero, and Wand 
(1996) indicate that M 400 leads to a very accurate ap- 
proximation of lr (g) by l-r (9) for a wide range of density 
shapes. 

Because of its smoothness and simplicity we will de- 
scribe the full binned implementation of h, and h2 for the 
normal kernel L(x) = (2q)1/2e x/2. We will also take 
cr = min{s, IQR/1.349} and M = 400. Other choices of 
L, -, and M > 400 might be considered, but these should 
make little difference to the answer for most applications. 

Let lr(g) be defined by (4.1)-(4.4) with M = 400 and L 
equal to the standard normal kernel. 

Binned implementation of h1 with normal kernel: 

~~ ( 6 11/3 

0-2(gii)nJ 
where 

gil = {2/ (3n) } /521/2a . 

Binned implementation of h2 with normal kernel: 

} 2( 6 } 1/3 

-2 (921 )nJ 

where 

921 = [2/{(21F) /2 4(922) /5n}] /521/25 

and 

922 {2/(5n)}1/721/2. 

(a) Density # 1 (b) Density # 3 
OD. 

LevelO 0 
Level /, 

LevelI2 /I 
......SPLUS 1 

-0.4 -0.2 0.0 0.2 -0.4 -0.2 0.0 0.2 0.4 

Iog1O(hhat)-Iog1O(hMISE) Iog1O(hhat)-Iog1O(hMISE) 

(c) Density # 4 (d) Density # 6 

o 

~~~~~~~~~~~~~~~~~00 
/~~~~~~~~~~~~/ 

-0.4 -0.2 0.0 0.2 0.4 0.6 -0.2 -0.1 0.0 0.1 

log1 O(hhat)-log1 O(hM ISE) log1lO(hhat)-logl1O(hM ISE) 

Figure 2. Graphical Summary of Simulation Results for n = 50. Ker- 
nel density estimates of 500 log 10 (h1) -log 10 (hMIsE) values; I = 0, 1, 2. 
The average bin width chosen by S-PLUS is shown by a vertical dotted 
line. 
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Figure 3. Histograms of the British Incomes Data Based on (a) the Bin Width h2, (b) the Bin Width ho, and (c) the S-PLUS Default Bin Width. 

It should be pointed out that a fast algorithm based on 
integer division exists for computing the cj. See Fan and 
Marron (1994) for its description. Also, the inner summa- 
tion of (4.2) is a discrete convolution, and so can be com- 
puted quickly using the fast Fourier transform (see, e.g., 
Wand 1994) or an economical direct approach (see Scott 
1992, p. 118). 

5. NUMERICAL RESULTS 

5.1 Simulation Results 

To test the efficacy of our proposal a small simulation 
study was carried out with 500 replications, n = 500, and 
the densities #1 (standard normal), #3 (strongly skewed), 
#4 (kurtotic), and #6 (bimodal) from Marron and Wand 
(1992). 

The results are graphically summarized in Figure 1. 
Figure 1 shows kernel density estimates of log10(hi) - 
logl0(hMIsE) for 1 = 0, 1, 2. The dashed vertical line shows 
the position of the average default bin width used by S- 
PLUS. Because S-PLUS "rounds off" its default bin width 
there is not enough variability among the sample of bin 
widths to use a density estimate. For example, for the nor- 
mal density S-PLUS chose a bin width of .5 for 361 of 
the samples and a bin width of 1.0 for the remaining 139 
samples. 

Among the h, there is a definite pattern of higher values 
of 1 leading to a rule with lower bias, but with a possible 
increase in variance (especially apparent for density #6). 
This can be explained by the fact that larger 1 corresponds 
to less dependence on the normal scale rule, but more es- 
timation steps. Overall, h2 is the rule that is consistently 
closest to the optimal bin width. 

The S-PLUS default bin width is always, to varying de- 
grees, too large compared to hMISE. This can be partially 
explained by the rounding off procedure. Nevertheless, this 
tendency to oversmooth is disconcerting because it can give 
misleading results when the distribution has some interest- 
ing structure. 

We then ran the study simulation for n = 50 to check that 
the selectors did not rely on the sample size bei-ng large. The 
results are summarized in Figure 2. They indicate that the 
higher level bin width selectors maintain their good perfor- 
mance. 

Finally, we ran the simulation for n = 10. In this case 
the optimal bin width is not very well defined so the main 
goal was to make sure that the rules were not susceptible 
to complete breakdown. Analysis of the simulation output 
showed that all of the bandwidth samples were relatively 
well behaved, without any strong outliers. 

5.2 An Example 

Figure 3 shows the results of applying (a) h2, (b) Scott's 
(1979) normal reference rule ho, and (c) the S-PLUS de- 
fault bin width to a real data set. The data represent 7,201 
British incomes for the year 1975, and have been divided 
by their sample average. The source of these data is the 
ESCR Data Archive at the University of Essex, Family Ex- 
penditure Survey, Annual Tapes, 1968-1983, Department of 
Employment, Statistics Division, Her Majesty's Stationery 
Office, London. 

The bin width choice h2 leads to a histogram that clearly 
shows the interesting bimodal structure in the data. The se- 
lector ho also shows the bimodal structure, but not quite as 
sharply. The S-PLUS default bandwidth leads to a grossly 
oversmoothed histogram that does not detect the bimodal- 
ity. An inexperienced data analyst using a package like S- 
PLUS would probably miss this important feature in the 
data due to its ad hoc choice of bin width. 

6. CONCLUSION 

We have shown that simple plug-in ideas lead to bin 
width rules with very good theoretical properties, as well 
as good to very good practical performance. The rule h2 
gives the most satisfactory practical performance, and has 
near-optimal theoretical properties. This contrasts with the 
logarithmic varying bin width rules used by many statistical 
packages, which tend to hide detail in the data. 

The American Statistician, February 1997, Vol. 51, No. 1 63 



An S-PLUS function for computation of h1 is available by 
request from the author (e-mail: wand@agsm.unsw.edu.au). 

APPENDIX: PROOF OF THEOREM 

Conditions sufficient for the theorem to hold are as fol- 
lows. 

* (A. 1) The kernel L has all moments finite and two con- 
tinuous derivatives. 

* (A.2) The density f has three continuous, ultimately 
decreasing derivatives. 

Weaker conditions are certainly possible, but probably 
not worth pursuing. 

Let M(h) MISE{f(.; h)}. An extension of the results 
of Scott (1979) and Freedman and Diaconis (1981) leads to 

M(h) = n-h-1 - h2 ,2 + 1 h4 4 + o(n-rh-1 + h4) 
6 30 

from which it follows that 

(~~~- ) 
2 3 
l2 

3 
() M'(h) = -nJlh2 _ h~2 + h h3b4 + o(nJ1h2 + h) 

3 15 

and 

M"(h) = 2n-1h3 2 + 2 h2 4 + o(n-1h3 + h2). 

Now 

0 = M'(hMISE)= M'(hAMISE) + (hMISE- hAMISE)M (h), 

where h = O(n1/3) is between hAMISE and hMISE. There- 
fore, 

hMISE hAMISE - M"(h) = hAMISE + O(nQ1). 

It follows that the relative error of hi is given by 

hl/hMISE - 1 

='-1/3{ 7(g)-1/3 ),-1/31 pn23 

-) -3 2 _/ {f()2 + * +Op(n -2/3) (A1 

Results for the asymptotic distribution of degenerate 
(Hall 1984) and nondegenerate (Serfling 1980) U-statistics 
lead to 

2(g) -2 = [var{ 2(g)}]1/2Zn + Eb2(g) - ~b2, (A.2) 

where Zn is asymptotically N(0, 1). Note that, for g 
Cnr1/5, var{f2(g)} 1/2 = (n /). 

First suppose that 1 = 1. Then 

Ef2(g) - - {L(r)(0)+ 
I 

lJ2(L) js } n-2/5 (A.3) 

which dominates the first term of (A.2), so (3.1) follows 
from this result and (A. 1). However, for I > 2 the coefficient 
of rr2/5 in (A.3) cancels and we are left with 

Ef2 (g) - ~2=O(n45 

which means that the first term of (A.2) is dominant. Results 
of Hall and Marron (1987) for the variance of f2(g) lead 
to (3.2). 

[Received December 1994. Revised May 1996.] 
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