
Final Exam

Advanced Methods for Data Analysis (36-402/36-608)

Due Thursday May 8, 2014 at 11:59pm

Instructions: you will submit this take-home final exam in three parts.

1. Writeup. This will be a complete writeup, in full data analysis report format, of what you
have done. More details on the format to follow. And, as with your homework assignments,
your submitted writeup must be in PDF format. You can produce this PDF using LaTeX,
Word, or whatever you want, but at the end of the day, it must be a PDF. Any other type of
file will not be accepted.

Make sure that the extension here is .pdf.

2. Code. Also submit your R code for the homework as a plain text file. You should demarcate
sections of the code that correspond to different tasks using clearly visible comments (e.g., as
in ##### Cross-validation #####).

Make sure that the extension here is .txt.

3. Data set. Each of you will be emailed a slightly different data set, and for completeness you
will submit this (Rdata) file as well.

Make sure that the extension here is .Rdata.

You must not communicate at all with your classmates, your friends, or anybody other than the
Professor and the TAs about this take-home final exam, during the week you have to complete it.
Evidence of illegal communication will be taken very seriously.

You are of course allowed to consult your class notes, your homework assignments, or any of
the other course materials in order to complete this exam. You may use the internet as a resource
but you may not use it to communicate with anybody else or ask questions about your assignment.
Everything you write must be in your own words, and you must explicitly cite any sources used
other than the class materials.

The following describes the scientific problem and statistical questions that you must address,
as well as the format of your writeup.

1 Cancer classification

This data set examines 14 types of cancer, numbered as: 1–breast, 2–prostate, 3–lung, 4–collerectal,
5–lymphoma, 6–bladder, 7–melanoma, 8–uterus, 9–leukemia, 10–renal, 11–pancreas, 12–ovary, 13–
meso, 14–cns. You will predict the cancer type of a given patient given his or her gene expression
measurements. This data is available on the website for the Elements of Statistical Learning text-
book, and was originally taken from a paper by Ramaswamy et al. (2001), “Multiclass cancer
diagnosis using tumor gene expression signatures”. You have access to 16,063 gene expression mea-
surements per patient, which is a lot! Note that the outcome here, cancer type, is discrete and
unordered, taking values between 1 and 14, which makes this a classification problem with K = 14
classes.
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You should have been emailed an R data file cancerxxx.Rdata (where xxx stands for a number
between 001 and 100). When loaded into your current R session, this gives you 4 objects: xtrain,
ytrain, xtest, ytest. These are, in respective order: the gene expression measurements for the
training set, the cancer types for the training set, the gene expression measurements for the test
set, and the cancer types for the test set. There are 144 patients in the training set, and 54 in the
test set. Therefore the dimensions are xtrain: 144× 16, 063, ytrain: 144× 1, xtest: 54× 16, 063,
ytest: 54 × 1. In other words, using the typical language and notation in data analysis, we have
p = 16, 063 predictor variables, ntrain = 144 training observations, and ntest = 54 observations.

2 Statistical tasks, data analysis report

You will submit a data analysis report, just like you did with the last midterm take-home exam.
As with this last exam, the data analysis report can be a maximum of 5 pages, and must abide by
the section structure described below. You should clearly lay out what you have done, using figures
to supplement your explanation. Your figures must be of proper (large) size with labeled, readable
axes. You should not mindlessly paste raw R output into your writeup with 12 significant digits,
etc. You can include R snippets at your discretion, if you think that will help your explanation. In
general, you should take pride in making your report readable and clear. You will be graded both
on statistical content and quality of presentation.

Section 1: Introduction

The introduction should be brief (1 or 2 paragraphs) but must properly describe the data set and
motivate the problem. You cannot copy motivation text verbatim from this document or anywhere
else for that matter. Everything you write must be in your own words (and as mentioned previously,
this obviously holds for the entire report). You do not need to perform basic exploratory data
analysis like you learned in 401, and in fact if you do so here, you will be wasting space. Examples
of basic points to cover: where does the data set come from? How many genes (i.e., the expression
levels of how many genes) have been measured? How many patients are there in the training set,
and how many in the test set? What are the patient outcomes (types of cancer)? How many of
each type of cancer is represented in the training set, test set? What is the ultimate statistical goal
(cancer classification)? What about its nature makes the goal a statistically challenging problem?

Section 2: Variable screening

Between this section and the next, we will come up with a relatively naive predictive model based
on variable screening and linear regression. The first thing you will do is to reduce the number of
variables in consideration from 16,063 to ≈ 50. You will do this using a technique called variable
screening. Suppose that you are given the gene expression measurements from gene j, across the n
patients, which we will denote by x1j , x2j , . . . xnj ∈ R. Recall that each of these patients falls into
one of K cancer types, denoted by the class coding y1, . . . yn ∈ {1, . . .K}. Then the between-class
variation of gene j is defined as

Vj =

K∑
k=1

nk · (x̄kj − x̄j)2,

where nk is the number of patients in class k (cancer type k), x̄kj is the mean of patients in class k
along gene j, i.e.,

x̄kj =
1

nk

∑
i : yi=k

xij ,
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and x̄j is the overall mean of patients along gene j, i.e.,

x̄j =
1

n

n∑
i=1

xij .

On the training data, compute the between-class variance for each gene j = 1, . . . p. That is, to be
perfectly clear, this should produce p separate between-class variance scores. Select the 50 genes
that have the highest between-class variance scores, and save their identity along with the scores.
Then, portray this information by producing a plot, with the numbers 1 through 50 on the x-axis,
and the highest through the 50th highest between-class variance scores on the y-axis. We will refer
to this smaller set of 50 variables as the screened set of variables.

In your screened set of variables, there will turn out to be pairs of variables that are perfectly
correlated. You can visually spot this by looking at the trend of (ordered, decreasing) between-class
variance scores in the plot: there will be occasional neighboring pairs of points with the exact same
height. Identify the pairs of perfectly correlated variables (hint: the R diff command, applied to
the ordered between-class variance scores). Further reduce the screened set by throwing out one of
each pair of variables with perfect correlation. How many variables are left over? And what is the
highest absolute correlation between pairs of variables in the new screened set?

Section 3: Linear regression of indicators

Here we will construct a linear regression based classifier using the screened set of variables from
the last section (this is the final screened set, after throwing out variables with perfect correlation).
Again, we will only use data from the training set. First consider predicting class 1 versus all other
classes 2, . . . 14, and (temporarily) recoding the class labels as ỹ

(1)
1 , . . . ỹ

(1)
n , where

ỹ
(1)
i =

{
1 if yi = 1

0 if yi 6= 1
, i = 1, . . . n.

We can now use a linear regression of ỹ(1) on the screened set of variables, and let β̂(1) denote the
coefficients from this regression. Next consider predicting class 2 versus all others 1, 3, . . .K. Simi-
larly recode the class labels as ỹ

(2)
1 , . . . ỹ

(2)
n (where each is 1 or 0 depending on class 2 membership),

fit a linear regression of ỹ(2) on the screened set of variables, and let β̂(2) denote the coefficients.
After doing this K times, each time considering a different class versus all the rest, we should have
K sets of coefficients β̂(1), . . . β̂(K). Now suppose that we are given a new observation and let x0
denote the measurements of the screened set of variables for this observation. We predict the class
of this new observation by looking at the fitted values from each of the K linear regressions, and
choosing the highest:

ŷ0 = argmax
k=1,...K

xT0 β̂
(k).

This technique is called linear regression of indicators. It is not the most sophisticated technique,
but it will give us a basic cancer classification rule. You will fit the linear regression of indicators
model on the training set. What is the training error, i.e., how many training misclassifications are
made? Also, why did we need to run this on the screened set of variables—why couldn’t we just
have used the full set?

As you (should) well know by now, training error is not at all a good measure of predictive
performance. Still working entirely with the training data, use 4-fold cross-validation to estimate the
test error of the linear regression of indicators model. How many cross-validation misclassifications
are made? Is this substantially different from the number of training misclassifications?

An important note: for the cross-validation part, you should take care to “balance the folds”
so that they contain a number of observations from each class that is proportional to the numbers
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on the full set. E.g., if the full training set has 8 observations from each of classes 1–4, and 16
from class 5, then each of the 4 folds should contain 2 observations from each of classes 1–4, and 4
from class 5. Probably the easiest way to do this programmatically is to work with the observations
from each class separately when assigning tolds: for each class k = 1, . . .K, randomly divide the
observations from this class into 4 folds and save their folds labels (e.g., 1, 4, 2, 4, 3, 1, 1, . . .). Then
just amalgamate the labels at the end and you will have assignments of all observations to folds in a
way that is balanced. To verify that you’ve properly done this, report the class proportions within
each fold.

If you cannot figure out how to make balanced folds, then just make unbalanced folds, i.e., just
create folds in the way that you’re used to doing. This is certainly better than nothing and you will
still get substantial partial credit.

Section 4: Lasso multinomial regression

We will switch gears and consider a more sophisticated classification technique: lasso multinomial
regression. Luckily there is readily available software for this technique in the glmnet R package.
Consult the last section of the lecture notes on logistic regression for a recap of multinomial regres-
sion; in this model, with K classes, we fit K − 1 coefficient vectors β̂(1), . . . β̂(K−1). In the lasso
penalized version of multinomial regression, we fit these coefficients in such a way that they turn out
to be sparse (i.e., each vector β̂(k) has many zero components, for each k = 1, . . .K−1). Note that in
our context, this corresponds to selecting out a handful of the 16,063 genes to make a classification
rule (these are the ones with nonzero components in the coefficient vectors). As you learned in class,
there is a tuning parameter λ associated with the lasso method that controls the number of zero
components in the fitted coefficients, with larger λ meaning more zero components, and smaller λ
many fewer zero components.

Use the cv.glmnet in the glmnet to fit a multinomial regression model with lasso penalty. As
for the choice of λ, it is best if you don’t prespecify a list of λ values and this function will choose
100 values for you, and compute the coefficient estimates at each of them. Note: you will want to
set alpha=1 and family="multinomial" as arguments in the function. The former instructs it to
use the lasso penalty (alpha=0 for the ridge penalty), and the latter instructs it to use multinomial
regression for classification. Also, as suggested by its name, this function cv.glmnet will also perform
cross-validation at each value of λ for us. For example, you can call:

las.cv = cv.glmnet(xtrain,ytrain,alpha=1,family="multinomial",foldid=bal.folds)

las.mod = las.cv$glmnet.fit

The first line runs 4-fold cross-validation for the lasso multinomial regression model, over a grid of
100 values of λ chosen internally by the function. Note that the last argument foldid here specifies
the fold assignments that cv.glmnet should use, assuming that bal.folds were the balanced fold
assignments you created previously in Section 3. The second line grabs the glmnet object that is
the result of fitting the lasso multinomial regression model to the full training set (i.e., not to partial
sets made up of 3 folds), at each of the 100 values of λ.

By inspecting the las.cv object (and reading relevant documentation if necessary), plot the CV
error for lasso multinomial regression as a function of λ. Note that it’s perfectly fine to use the
default plotting function provided by the glmnet package for this (you shouldn’t have to do this
yourself!). Also note that the default of cv.glmnet is to consider multinomial deviance as the CV
error measure, and not misclassification rate, and this is fine. What is the value λmin selected by the
usual rule? What is the value λ1se selected by the one standard error rule? And, for each rule, what
are the number of cross-validation misclassifications incurred? (Hint: there are many ways to do
this, but probably the easiest is just to rerun cv.glmnet with the option type.measure="class").
How does this compare to the performance of the linear regression of indicators method?
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How many variables in total are used in the model chosen by the usual rule? And how many
in the model chosen by the one standard error rule? To answer these questions, you will examine
the fitted coefficients, at each of λmin, λ1se, stored in the las.mod object. (Recall these are the
coefficients when the models are fit to the full training set.) For the two values λmin, λ1se, each one
of the coefficient vectors β̂(1), . . . β̂(K−1) vectors will have a select number of nonzero components,
and you want to figure out the total number of components that have a nonzero entry in at least
one coefficient vector. (Hint: the unique function in R.) Comment on whether or not this is a big
reduction from the full set of 16,063 genes. What would this reduction mean practically to a cancer
scientist?

Finally, consider the identities of the screened set of variables from Section 1 (after removing
perfectly correlated variables), and the set of variables used in the model chosen by the one standard
error rule. How many do they have in common? (Hint: the %in% operator in R.) What does this
tell you about the effectiveness of variable screening as a tool for variable selection?

Section 5: Test set evaluations

Lastly, we will look at the test set. (All statistical inquiries up until now have used the training set
exclusively.) Consider the linear regression of indicators model, and the lasso multinomial regression
model chosen by the one standard error rule. Use each of these to predict the class (cancer type)
of patients in the test set. What are the number of misclassifications committed by each model?
Which is better in this regard, and is there a big difference? Are the misclassification rates (i.e., the
proportions of observations misclassified) roughly consistent with the CV misclassification rates for
these methods, that you computed previously? In the case that there are differences between the
test error rates and the CV error rates, make an attempt to explain why.

Section 6: Discussion

The discussion should be brief (1 or 2 paragraphs). Summarize your analysis, in the context of the
problem (cancer classification). Use this room to reflect on the results that you view as successes,
and the results that raise suspicions in your mind. You can also provide ideas for what you might
consider in the future, in this data setting.
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