
Homework 1

Advanced Methods for Data Analysis (36-402/36-608)

Due Thursday January 23, 2014 at 11:59pm

Instructions: each homework will be submitted in two parts.

1. Writeup. An important part of the learning the data analysis trade is learning how to com-
municate. Prepare a writeup to the questions below and work hard to make your submission
as readable as you possibly can—this means no raw R code as part of the writeup, unless you
find it necessary for clarity; no raw R output with 12 significant digits, etc., unless again you
deem it necessary; making sure figures are of proper (large) size with labeled, readable axes;
and so forth. Your submitted writeup must be in PDF format. You can produce this PDF
using LaTeX, Word, or whatever you want, but at the end of the day, it must be a PDF. Any
other type of file will not be accepted.

2. Code. Also submit your R code for the homework as a plain text file. You should demarcate
sections of the code that correspond to the different homework problems using clearly visible
comments (e.g., as in ##### Problem 1 #####).

1 Hello kernel regression

Recall that we learned kernel regression at the end of Lecture 1. In this problem you will consider
the same data set from Lecture 1, but fit kernel regression, and consider its performance. It’s going
to be helpful to look over the code from this first lecture carefully, in “01-intro.R”.

(a) Download the file “nonlin.Rdata” from the course website, and load it into your R session,
with load("nonlin.Rdata"). You can type ls() to see the R objects that have been loaded into
memory.

The matrices xtrain and ytrain, are each 100× 50, containing 50 training data sets of x and y
points along its columns. That is, the first column of xtrain and the first column of ytrain make
up a training data set of 100 x-y pairs.

Hence, amassing the data sets together, there are 5000 x points and 5000 y points in total. Plot
these 5000 x points versus these 5000 y points, on a single plot, to get an idea of the trend. (Hint:
there is an easy way to do this with a single call to the plot function.)

(b) For the next bit, we’ll restrict our attention to just the first training set, i.e., the first columns
of xtrain and ytrain. Using the function ksmooth, fit a kernel regression on these training points,
with 3 different values of the bandwidth parameter: 0.01, 0.25, and 1. You should be setting the
option kernel="normal". For each bandwidth value, plot the estimated regression function from
kernel regression over top of the training points.

(c) By inspection, what happens to the kernel regression fit as we drive the bandwidth parameter
down to 0? What procedure does this remind you of (that we’ve already seen)? What happens as
we drive the bandwidth parameter up to 1? Again, what procedure does this remind you of?
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(d) Sticking with the same training set, i.e., the first columns of xtrain and ytrain, we’re going
to investigate our predictive performance on the first test set, i.e., the first columns of xtest and
ytest. For a set of 20 bandwidth values, equally spaced between 0.01 and 1, fit a kernel regression
to the training points and predict the regression function at the test x points. Evaluate its test
error, measured in terms of squared error loss to the test y points. Hence, you will have a curve of
20 test errors; plot this test error curve as a function of the underlying bandwidth values.

(e) According to this test error curve, what is the optimal bandwidth value? What is its associated
test error? Plot the kernel regression fit, over top of the training points, at this optimal bandwidth
value. Looking at the plot, does your eye agree that this is really the best bandwidth value? Why
or why not?

(f) Now repeat part (d), but do the same for each of the 50 training and test data sets in turn, and
report the average test error curve at each bandwidth value over the 50 sets. Again, plot the test
error curve with respect to the bandwidth values. What do you see now? Has the optimal value of
the bandwidth changed, and has its associated test error?

Bonus: There was a big difference between the test error curve from computed from a single data
set, and the test error curve averaged over 50 data sets, when we looked at k-nearest-neighbor
regression in lecture. There’s not as big a difference here with kernel regression. Why is this?

2 Goodbye regression assumptions

Consider arbitrary random variables X ∈ Rp, Y ∈ R with absolutely no assumptions relating the
two, and consider regressing Y on X (in the population), with regression coefficients

β = Var(X)−1Cov(X,Y ), β0 = E(Y )− βTE(X).

From X, our prediction for Y is hence β0 + βTX.

(a) Define the error term E = Y − β0 − βTX. Prove that E has mean zero, E(E) = 0.

(b) Prove that E is uncorrelated with the predictor variables, Cov(E,X) = 0.

(c) By construction, we have the relationship Y = β0 + βTX + E, i.e., we’ve written Y as a linear
function of X plus an error term E. This error term has mean zero by part (a). Does part (b) imply
that the error term is independent of X? What in particular does this mean about the conditional
variance Var(E|X)? Need this be constant with X?

(d) Consider i.i.d. samples (xi, yi), i = 1, . . . n, with the same distribution as (X,Y ). For simplicity
you may assume from now on that E(X) = E(Y ) = 0 (though this is not really necessary). Use the
same sample notation from Lecture 2, i.e., y = (y1, . . . yn) ∈ Rn for the vector of outcomes, and

x =


xT1
xT2
. . .
xTn

 ∈ Rn×p

for the matrix of predictors. Consider the linear regression estimate

β̂ = (xTx)−1xT y.
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Compute E(β̂|x). Is this necessarily equal to β = Var(X)−1Cov(X,Y )? If not, under what assump-
tions will it be?

(e) Compute Var(β̂|x). In your formula, you can denote the conditional variance of e = y − xβ on
x by Var(e|x) = Σ(x). What does your formula reduce to in the case that Σ(x) = σ2I?
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