
Homework 2

Advanced Methods for Data Analysis (36-402/36-608)

Due Tues February 4, 2014 at 11:59pm

Instructions: each homework will be submitted in two parts.

1. Writeup. An important part of the learning the data analysis trade is learning how to com-
municate. Prepare a writeup to the questions below and work hard to make your submission
as readable as you possibly can—this means no raw R code as part of the writeup, unless you
find it necessary for clarity; no raw R output with 12 significant digits, etc., unless again you
deem it necessary; making sure figures are of proper (large) size with labeled, readable axes;
and so forth. Your submitted writeup must be in PDF format. You can produce this PDF
using LaTeX, Word, or whatever you want, but at the end of the day, it must be a PDF. Any
other type of file will not be accepted.

2. Code. Also submit your R code for the homework as a plain text file. You should demarcate
sections of the code that correspond to the different homework problems using clearly visible
comments (e.g., as in ##### Problem 1 #####).

1 Oh training error, so young and naive

In this problem you’ll investigate the optimism of training error in linear regression. We are given
training samples (xi, yi), i = 1, . . . n, and test samples (x′i, y

′
i), i = 1, . . .m which we’ll assume are

all i.i.d., i.e., these points are all independent and come from the same distribution.
Assuming that the predictors are p-dimensional, let β̂ ∈ Rp denote estimated linear regression

coefficients on the training data,
β̂ = (xTx)−1xT y,

where x is the n × p matrix with ith row equal to xi, and y is an n-dimensional vector with ith
component yi. We’re going to prove that

E
[ 1

n

n∑
i=1

(yi − β̂Txi)
2
]
≤ E

[ 1

m

m∑
i=1

(y′i − β̂Tx′i)
2
]
,

where the expectations above are over all that is random, i.e., over the training set on the left hand
side, and over both the training and testing sets on the right hand side. In words, we’re proving
that the expected training error is always less than or equal to the expected testing error (without
many assumptions at all on the true model), meaning that the training error is naively optimistic.

(a) Argue that the expected test error is the same whether we have m test points or just 1 test
point, i.e.,

E
[ 1

m

m∑
i=1

(y′i − β̂Tx′i)
2
]

= E
[
(y′1 − β̂Tx′1)2

]
.

1



Hence argue that indeed it doesn’t matter whether we have m test points or n test points,

E
[ 1

m

m∑
i=1

(y′i − β̂Tx′i)
2
]

= E
[ 1

n

n∑
i=1

(y′i − β̂Tx′i)
2
]
,

and so we may assume without a loss of generality that m = n (the testing and training sets have
the same number of samples).

(b) Now it is our task to compare the sizes of E[ 1n
∑n

i=1(yi − β̂Txi)
2] and E[ 1n

∑n
i=1(y′i − β̂Tx′i)

2].
First consider the random variables

A =
1

n

n∑
i=1

(yi − β̂Txi)
2 and B =

1

n

n∑
i=1

(y′i − β̃Tx′i)
2,

where β̃ ∈ Rp denotes the estimated linear regression coefficients but fit on the test set. Argue that
A and B have the same distribution, so E(A) = E(B).

(c) Argue that the random variable B defined in part (b) is always less than or equal to the observed
test error,

B =
1

n

n∑
i=1

(y′i − β̃Tx′i)
2 ≤ 1

n

n∑
i=1

(y′i − β̂Tx′i)
2.

(Hint: don’t try to plug in a formula for β̃, just recall that it is characterized by least squares ...)

(d) Use the result of part (c) to conclude that

E
[ 1

n

n∑
i=1

(yi − β̂Txi)
2
]
≤ E

[ 1

n

n∑
i=1

(y′i − β̂Tx′i)
2
]
,

as desired.

2 The advantages of backwardness

(credit to Cosma Shalizi)

Some theories of economic growth say that it’s easier for poor countries to grow faster than rich
countries—“catching up”, or the “advantages of backwardness”. One argument for this is that poor
countries can grow by copying existing, successful technologies and ways of doing business from rich
ones. But rich countries are already using those technologies, so they can only grow by finding
new ones, and copying is faster than innovation. So, all else being equal, poor countries should
grow faster than rich ones. A way to check this is to look at how growth rates are related to other
economic variables.

We will examine data from the “Penn World Table”1, for selected countries and years. See
penn-table.csv on the course website. Each row of this table gives, for a given country and a
five-year period, the starting year, the initial population of the country, the initial gross domestic
product (GDP) per capita (adjusted for inflation and local purchasing power), the average annual
growth rate of GDP over that period, the average population growth rate, the average percentage
of GDP devoted to investment, and the average percentage ratio of trade (imports plus exports) to
GDP.

1See http://pwt.econ.upenn.edu/php_site/pwt_index.php.
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We will use the np package on CRAN to do kernel regression.2 Install it, and load the data file
penn-table.csv (linked from the course website).

(a) Fit a linear model of gdp.growth on log(gdp). What is the coefficient? What does it suggest
about catching up?

(b) Fit a linear model of gdp.growth on log(gdp), pop.growth, invest and trade. What is the
coefficient on log(gdp)? What does it suggest about catching up?

(c) It is sometimes suggested that the catching up effect only works for countries which are open
to trade with, and learning from, more-developed economies. Add an interaction between log(gdp)

and trade to the model from part (b). What are the relevant coefficients? What do they suggest
about catching up?

(d) Use 5-fold cross-validation to decide which of these three linear models predicts best.

(Hint: look at the code in cv bws npreg.R, linked from the course website, which performs cross-
validation to choose the best bandwidth value in kernel regression. Adapt it to meet your purpose
here.)

(e) The npreg function in the np package does kernel regression. By default, it uses a combination
of cross-validation and sophisticated but very slow optimization to pick the best bandwidth. Here,
we will force it to use fixed bandwidths, and do the cross-validation ourselves. The command

kernfit = npreg(gdp.growth~log(gdp),data=penn,bws=0.1)

performs a kernel regression of growth on log(gdp), using the default kernel (which is Gaussian)
and a bandwidth of 0.1. (In the above, penn represents the name of the data frame saved from
reading in penn-table.csv; you may have named this data frame something else.) You can run
fitted, predict, etc., on the output of npreg just as you can on the output of lm.

The code in cv bws npreg.R, linked online, computes cross-validation error for kernel regression
over a specified set of bandwidth values. Use it to compute the 5-fold cross-validation error as a
function of the 20 bandwith values bws = seq(0.1,1,length=20). Plot the cross-validation error
curve (as a function of the bandwidth). Which bandwidth value predicts best?

(f) By calling

kernfit.auto = npreg(gdp.growth~log(gdp),data=penn)

we instruct the npreg function to select the bandwidth value via its own internal cross-validation
mechanism. What value of the bandwidth did it choose? (You can see the selected bandwidth by,
e.g., typing summary(kernfit.auto).) Is it similar to the one you selected in part (e)?

(g) To choose between the best linear model, as picked by you in part (d), and the kernel regression
from problem (f), use cross-validation again. Modify the cross-validation code you’ve used so far to
get a cross-validation error for the kernel estimator (with automatic bandwidth selection). Recall
that you already have a cross-validation error for the best linear model from part (d).

(h) Based on your analysis, does the data support the idea of catching up, undermine it, support
its happening under certain conditions, or provide no evidence either way?

2Chapter 4 in the Shalizi text contains helpful examples, and also, a good tutorial for this package is available at
http://www.jstatsoft.org/v27/i05.
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