
Homework 4

Advanced Methods for Data Analysis (36-402/36-608)

Due Tues February 25, 2014 at 11:59pm

Instructions: each homework will be submitted in two parts.

1. Writeup. An important part of the learning the data analysis trade is learning how to com-
municate. Prepare a writeup to the questions below and work hard to make your submission
as readable as you possibly can—this means no raw R code as part of the writeup, unless you
find it necessary for clarity; no raw R output with 12 significant digits, etc., unless again you
deem it necessary; making sure figures are of proper (large) size with labeled, readable axes;
and so forth. Your submitted writeup must be in PDF format. You can produce this PDF
using LaTeX, Word, or whatever you want, but at the end of the day, it must be a PDF. Any
other type of file will not be accepted.

2. Code. Also submit your R code for the homework as a plain text file. You should demarcate
sections of the code that correspond to the different homework problems using clearly visible
comments (e.g., as in ##### Problem 1 #####).

1 Oh training error, so young and naive, part deux

This problem will check our claim in lecture about degrees of freedom and optimism, namely, that
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The setup is

yi = r(xi) + εi, i = 1, . . . n,

y′i = r(xi) + ε′i, i = 1, . . . n.

The points xi, i = 1, . . . n are considered fixed. The errors εi, i = 1, . . . n are uncorrelated, with
mean zero and variance σ2. The same is true for ε′i, i = 1, . . . n, and the two sets of errors are
independent. I.e., here (xi, yi), i = 1, . . . n is the training set, on which we fit ŷi = r̂(xi), i = 1, . . . n,
and (xi, y

′
i), i = 1, . . . n is the independent test set.

(a) Start off with
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and then expand the right-hand side, to prove that

E
[ 1

n

n∑
i=1

(y′i − ŷi)2
]

= σ2 + E
[ 1

n

n∑
i=1

(
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(b) Now following the result in part (a), write
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and expand the right-hand side to prove the desired result in (1).

(c) Think about the result (1): this shows that the optimism—i.e., the difference in expected test
error and expected training error—is equal to 2σ2/n times the degrees of freedom. When df(ŷ) is
positive, this means that the expected training error is always smaller than the expected test error.
When df(ŷ) is negative, it is the other way around. So the question is: can df(ŷ) ever be negative?
If you think it can, give an example. If not, explain why not.

2 Kernels and splines: brothers, or distant cousins?

In this problem you’ll working again with the abalone data set from Homework 3. Refer back to
Problem 2 of Homework 3 for a description of the data set. This time we’ll be looking at predicting
the “whole weight” of male abalones from the diameter measurements (columns of 5 and 3 of the
abalone data frame, respectively).

(a) Plot the weight versus diameter for male abalones.

(b) We’re going to consider using both smoothing splines and kernel regresion (with a Gaussian
kernel) to model this trend. For smoothing splines, we’ll use the smooth.spline function in R, as
in

ssmod = smooth.spline(x,y,df=10),

which fits a smoothing spline of y on x with 10 degrees of freedom. Smoothing splines are usually
parametrized in terms of the smoothing parameter λ, but conveniently, this function allows us to
specify a target degrees of freedom value directly. Use (5 or 10 fold) cross-validation to estimate the
test error of the smoothing spline fit of weight on diameter for male abalones, at each of the degrees
of freedom values df = 2:60.

For kernel regression, we’ll use the npreg function in the np package, as in

kernmod = npreg(y~x,bw=5),

which fits a kernel regression (with Gaussian kernel, by default) of y on x with bandwidth 5. Use
(5 or 10 fold) cross-validation to estimate the test error of the kernel regression fit of weight on
diameter for male abalones, at each of the bandwidth values bws = 3:50.

(Hint: don’t perform these separately, just write one cross-validation loop for both tasks. It will
keep the coding at a minimum.)

For each of these procedures, plot the cross-validation errors as a function of the underlying
tuning parameter; i.e., for smoothing splines, plot the cross-validation error as a function of the
degrees of freedom of the fit, and for kernel regression, plot the cross-validation error as a function
of the bandwidth.

(c) What is the optimal value of degrees of freedom for smoothing splines, in terms of the mini-
mum cross-validation error? What is the optimal bandwidth for kernel regression? Which has a
better minimum cross-validation error, smoothing splines or kernels? Do you believe the two to be
significantly different in this regard? (Hint: for the last part, look at the cross-validation standard
errors.)
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(d) Suppose that the optimal value of degrees of freedom for smoothing splines that you chose in
part (c) was d, and the optimal bandwidth for kernel regression was h. Produce a plot of estimated
regression line from smoothing splines, fit to the entire data set, with degrees of freedom d, on
top of the weight-diameter pairs. Also produce a plot of the estimated regression line from kernel
regression, fit again to the entire data set, with bandwidth h, on top of the weight-diameter pairs.
Which looks more complex, the smoothing spline model or the kernel regression model?

(e) Prove that the degrees of freedom of a kernel regression fit with bandwidth h is

n∑
i=1

K(0)∑n
j=1K(

xi−xj

h )
. (2)

(Hint: in lecture, we showed that the degrees of freedom of a linear smoother was
∑n

i=1 w(xi, xi).
Kernel regression is just a linear smoother with a particular choice of weights ...)

(f) Using the result of part (e), for each bandwidth value bws = 3:50, calculate the corresponding
value of degrees of freedom of the kernel regression fit—remember, in you kernel regression, you used
the Gaussian kernel, so that

K(z) =
1√
2π
e−z

2/2.

You should perform this calculation using the entire data set, i.e., the xi points that you use in (2)
are the diameter values from the entire data set of male abalones. (Hint: it may help to write two
functions: one to compute the term 1/

∑n
j=1K(

xi−xj

h ) for a particular point xi, and another to sum
this over xi, i = 1, . . . n.)

What is the trend you see? I.e., is the degrees of freedom high for large bandwidths, or small for
large bandwidths? And does this make sense?

(g) Reproduce a plot of the cross-validation errors of kernel regression, but this time, plot the
corresponding degrees of freedom values (that you calculated in (f)) on the x-axis, rather than the
bandwidth values. This now allows you to make a direct comparison between the cross-validation
error curves for kernel regression and smoothing splines. Do so: describe the similarities/differences
between the general shapes of the two curves, as functions of degrees of freedom, and explain what
this means in the context of modeling. Comment on the value of degrees of freedom at which the
kernel regression cross-validation error curve is minimized, and whether this is different from that
for smoothing splines.

Bonus 1: There is a difference in behavior for the cross-validation errors of kernel regression and
smoothing splines, towards the end of the degrees of freedom spectrum (i.e., for low and high degrees
of freedom values). Though this may not seem like a drastic difference, it is pretty characteristic.
Can you explain why this might be the case?

Bonus 2: One might argue that, since the cross-validation error curves for both kernel regression
and degrees of freedom are so flat in the middle of the degrees of freedom range, they are both pretty
much minimized by any number of a large degrees of freedom values. Brainstorm: supposing we
had a preference for lower complexity models, what rule could we use to choose an optimal value for
degrees of freedom for either of these two methods, instead of just using the value that minimizes
the cross-validation error curve? (Hint: the cross-validation errors may come in handy here.)

3


