
Homework 8

Advanced Methods for Data Analysis (36-402/36-608)

Due Tues April 22, 2014 at 11:59pm

Instructions: each homework will be submitted in two parts.

1. Writeup. An important part of the learning the data analysis trade is learning how to com-
municate. Prepare a writeup to the questions below and work hard to make your submission
as readable as you possibly can—this means no raw R code as part of the writeup, unless you
find it necessary for clarity; no raw R output with 12 significant digits, etc., unless again you
deem it necessary; making sure figures are of proper (large) size with labeled, readable axes;
and so forth. Your submitted writeup must be in PDF format. You can produce this PDF
using LaTeX, Word, or whatever you want, but at the end of the day, it must be a PDF. Any
other type of file will not be accepted.

2. Code. Also submit your R code for the homework as a plain text file. You should demarcate
sections of the code that correspond to the different homework problems using clearly visible
comments (e.g., as in ##### Problem 1 #####).

1 Handwritten digits have never been so fun

Download the file “digits.Rdata” from the course website and load it into your R session with
load("digits.Rdata"). Now you should have a matrix threes of dimension 658× 256. (This data
set was taken from the data page of http://www-stat.stanford.edu/~tibs/ElemStatLearn/.)
Each row of the matrix corresponds to an image of a “3” that was written by a different person
(grabbed from a postal code that they wrote on a letter). Hence each row vector is of length 256,
corresponding to a 16 × 16 pixels image that has been unraveled into a vector, and each pixel takes
grayscale values between −1 and 1.

Download the file “plot.digit.R” from the course website and load it into your session with
source("plot.digit.R"). This gives you a function plot.digit that can plot any of the images,
i.e., any row of the matrix threes. Try it out with plot.digit(threes[1,]).

(a) Compute the principal component directions and principal component scores of threes. You
should use the function prcomp, and make sure it knows to center the columns of the data matrix
threes, but not to scale them. Plot the first two principal component scores (the x-axis being the
first score and the y-axis being the second score). Note that each point in this plot corresponds to
an image of a “3”.

(b) For each of the first two principal component scores, compute the following percentiles: 5%,
25%, 50%, 75%, 95%. Draw these values as vertical and horizontal lines on top of your plot (i.e.,
vertical for the percentiles of the first principal component score, and horizontal for those of the
second.)

(Hint: use quantile for the percentiles, and abline to draw the lines.)
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(c) Now you want to identify a point (i.e., an image of a “3”) close to each of the vertices of the grid
on your plot. This can be done by using the identify function with n=25, which allows you to click
on the plot 25 times (since there are 25 vertices). Each time you click, it will print the index of the
point that is closest to your click’s location. Make sure you click left-to-right, then top-to-bottom,
and record the indices in that order.

Note: although the identify function returns a vector of indices, and it claims that this vector is
ordered by the order of your clicks, I have found that it actually gives them in sorted order. This
isn’t what you want—you want them in the order that you clicked, so you will have to build this
vector manually.

(d) Plot all of the images of “3”s that you picked out in part (c), in an order that corresponds to
the vertices of the grid. For example, if you saved the vector of indices that you built in (c) as inds,
and you built them by clicking left-to-right and top-to-bottom as instructed, this can be done with:

par(mfrow=c(5,5)) # allow for 5 x 5 plots

par(mar=c(0.2,0.2,0.2,0.2)) # set small margins

for (i in inds) {

plot.digit(threes[i,])

}

(e) Looking at these digits, what can be said about the nature of the first two principal component
scores? (The first principal component score is increasing as you move from left-to-right in any of
the rows. The second principal component score is decreasing as you move from top-to-bottom in
any of the columns.) In other words, I’m asking you to explain what changes with respect to changes
in each of the component scores.

(f) Plot the proportion of variance explained by the first k principal component directions, as a
function of k = 1, . . . 256. How many principal component directions would we need to explain 50%
of the variance? How many to explain 90% of the variance?

(g) Reproduce the plot you made as in part (d), except, instead of plotting the original “3”s
themselves, plot the reconstructed digits using only the first k principal components, where k is be
the minimum number of components needed to explain 50% of the variance, as you calculated in
part (f). How do they look? Do the same thing, but now for k equal to the number components
needed to explain 90% of the variance. Again, how do they look?

Hint: a bit of caution must be taken here with the centering. Recall that the principal components
were computed on the centered data matrix threes. Call this centered matrix X; then recall that
the desired reconstruction is given by Z = XVkV

T
k , where Vk is a matrix whose columns contain

the first k principal component directions. Now, you almost want to plot select rows of Z, but not
quite—first you must add the column means of the threes matrix back into Z (otherwise you would
be looking at deviations of images from the pixel-wise means, not at images themselves). The scale

function in R is helpful for adding/subtracting constants to each column of a matrix; e.g.,

mat2 = scale(mat, center=TRUE, scale=FALSE)

centers a matrix mat, and

mat3 = scale(mat, center=a, scale=FALSE)

subtracts a[1] from the first column of mat, a[2] from the second column of mat, and so on, for a
vector a.
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(h) Finally, run hierarchical clustering on the threes data set. Use Euclidean distance for the
pairwise dissimilarity between images (easiest is just to call dist). Run hierarhical clustering with
single and complete linkages. Plot the dendrograms, and describe your impressions of the resulting
cluster structures. Do you see evidence of chaining with single linkage? Now, for each method, cut
the dendrograms so that there are K = 2 clusters. What are the resulting numbers of points in the
clusters, for the two methods? Are the clusters balanced for single linkage, complete linkage?
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