
Homework 9

Advanced Methods for Data Analysis (36-402/36-608)

Due Thurs May 1, 2014 at 11:59pm

Instructions: each homework will be submitted in two parts.

1. Writeup. An important part of the learning the data analysis trade is learning how to com-
municate. Prepare a writeup to the questions below and work hard to make your submission
as readable as you possibly can—this means no raw R code as part of the writeup, unless you
find it necessary for clarity; no raw R output with 12 significant digits, etc., unless again you
deem it necessary; making sure figures are of proper (large) size with labeled, readable axes;
and so forth. Your submitted writeup must be in PDF format. You can produce this PDF
using LaTeX, Word, or whatever you want, but at the end of the day, it must be a PDF. Any
other type of file will not be accepted.

2. Code. Also submit your R code for the homework as a plain text file. You should demarcate
sections of the code that correspond to the different homework problems using clearly visible
comments (e.g., as in ##### Problem 1 #####).

1 Between, within, and total variation

Fix a clustering assignment C(1), . . . C(n) ∈ {1, . . .K} of points x1, . . . xn. Recall the definitions of
within-cluster variation:

WK =

K∑
k=1

∑
C(i)=k

‖xi − x̄k‖22,

and between-cluster variation:

BK =
K∑

k=1

nk‖x̄k − x̄‖22,

where x̄k is the average of points in group k, x̄k = 1
nk

∑
C(i)=k xi, and x̄ is the overall average,

x̄ = 1
n

∑n
i=1 xi. Prove that the sum of these two measures of variation is equal to the total variation

in the data set,

T =

n∑
i=1

‖xi − x̄‖22,

i.e., prove that
T = WK +BK .

(Hint: start with total variation, and decompose this one big sum into K sums over the K clusters.
Then, within each of these K sums, add and subtract the cluster averages.)
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2 Bias and variance of linear regression

Consider a linear model
yi = xTi β

∗ + εi, i = 1, . . . n,

where x1, . . . xn ∈ Rp are fixed predictor measurements, β∗ ∈ Rp is a fixed unknown coefficient
vector, and ε1, . . . εn are i.i.d. N(0, σ2) errors. Let x ∈ Rn×p denote the predictor matrix (with
rows x1, . . . xn), and y = (y1, . . . yn) ∈ Rn the outcome vector. You may assume that the predictor
variables (columns of x) are linearly independent. Consider the linear regression estimate

β̂ = (xTx)−1xT y,

and define the linear regression fit r̂ by r̂(x0) = xT0 β̂, at an arbitrary point x0.

(a) Recall that we define the bias of r̂, at an arbitrary point x0, by

Bias
(
r̂(x0)

)
= E[r̂(x0)]− r(x0),

where r(x0) = xT0 β
∗ is the value of the true regression function at x0. Prove that Bias(r̂(x0)) = 0.

Hence argue (trivially) that the average bias across all inputs is still zero,

1

n

n∑
i=1

Bias
(
r̂(xi)

)
= 0.

(b) Now we consider the variance of r̂, averaged over all inputs. Prove that

1

n

n∑
i=1

Var
(
r̂(xi)

)
=
σ2p

n
.

(Hint: write an equivalent expression for the left-hand side above in matrix notation, involving the
trace of an n× n covariance matrix; it will make the calculation a lot easier.)

(c) From what you know about bias, variance, and their relationship to test error, what is the
expected test error of the linear regression fit, averaged across all inputs,

E
[ 1

n

n∑
i=1

(
y′i − r̂(xi)

)2]
?

Here y1,
′ . . . y′n denotes an independent test set, i.e., a new independent copy of y1, . . . yn (and r̂ was

only fit on the training set y1, . . . yn).

3 High-dimensional linear regression

Consider the usual linear regression setup, with outcome vector y ∈ Rn and predictor matrix x ∈
Rn×p. Let x1, . . . xp be the columns of x (predictor variables). Let β̂ ∈ Rp be a minimzer of the
least squares criterion

‖y − xβ‖22.

(a) Show that if v ∈ Rp is a vector such that xv = 0, then β̂ + c · v is also a minimizer of the least
squares criterion, for any c ∈ R.
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(b) If x1, . . . xp ∈ Rn are linearly independent, then what vectors v ∈ Rp satisfy xv = 0?

(c) Suppose that p > n. Argue that there exists a vector v 6= 0 such that xv = 0. Then argue,
based on part (a), that there are infinitely many linear regression estimates. Further show that there
is a variable i ∈ {1, . . . p} such that the regression coefficient of variable i can have different signs,
depending on which estimate we choose. Comment on this.

4 Ridges, lassos, and baseball salaries

In this problem you’ll use ridge regression the lasso to estimate the salary of various baseball players
based on a bunch of predictor measurements. This data set is taken from the ISLR package, and
R package that accompanies the Introduction to Statistical Learning textbook. Download the file
“hitters.Rdata” from the course website and load it into your R session. You should now have
the objects x, y, the former being a 263 × 20 matrix of predictor variables, and the latter a 263-
dimensional vector of salaries. Type colnames(x) to see the list of predictor variable names. (For
more information, download and install the ISLR package and type ?Hitters.)

Download and install the glmnet package from the CRAN repository. We’ll be using this package
to perform ridge regression and the lasso. Finally, define

grid = 10^seq(10, -2, length=100)

This is a large grid of λ values, and we’ll eventually instruct the glmnet function to compute the
ridge and lasso estimates at each one of these values of λ.

(a) The glmnet function, by default, internally scales the predictor variables so that they will have
standard deviation 1, before solving the ridge regression or lasso problems. This is a result of
its default setting standardize=TRUE. Explain why such scaling is appropriate in our particular
application.

(b) Run the commands

rid.mod = glmnet(x,y,lambda=grid,alpha=0)

las.mod = glmnet(x,y,lambda=grid,alpha=1)

This fits ridge regression and lasso estimates, over the whole sequence of λ values specified by grid.
The flag alpha=0 notifies glmnet to perform ridge regression, and alpha=1 notifies it to perform
lasso regression. Verify that, for each model, as λ decreases, the value of the penalty term only
increases. That is, for the ridge regression model, the squared `2 norm of the coefficients only gets
bigger as λ decreases. And for the lasso model, the `1 norm of the coefficients only gets bigger as λ
decreases. You should do this by producing a plot of λ (on the x-axis) versus the penalty (on the
y-axis) for each method. The plot should be on a log-log scale (i.e., with the argument log="xy"

passed to the R plot command).

(c) Verify that, for a very small value of λ, both the ridge regression and lasso estimates are very
close to the least squares estimate. Also verify that, for a very large value of λ, both the ridge
regression and lasso estimates approach 0 in all components (except the intercept, which is not
penalized by default).

(d) For each of the ridge regression and lasso models, perform 5-fold cross-validation to determine
the best value of λ. Report the results from both the usual rule, and the one standard error rule for
choosing λ. You can either perform this cross-validation procedure manually, or use the cv.glmnet

function. Either way, produce a plot of the cross-validation error curve as a function of λ, with
standard errors drawn, for both the ridge and lasso models.
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(e) From the last part, you should have computed 4 values of the tuning parameter:

λridgemin , λ
ridge
1se , λlassomin , λ

lasso
1se .

These are the results of running 5-fold cross-validation on each of the ridge and lasso models, and
using the usual rule (min) or the one standard error rule (1se) to select λ. Now, using the predict
function, with type="coef", and the ridge and lasso models fit in part (b), report the coefficient
estimates at the appropriate values of λ. That is, you will report two coefficient vectors coming from
ridge regression with λ = λridgemin and λ = λridge1se , and likewise for the lasso. How do the coefficient
estimates from the usual rule compare to those from the one standard error rule? How do the ridge
estimates compare to those from the lasso?

(f) Suppose that you were coaching a young baseball player who wanted to strike it rich in the
major leagues. What handful of attributes would you tell this player to focus on?

4


