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1 The bootstrap

1.1 Basic idea

• The bootstrap is one of the most general and the most widely used tools to estimate measures
of uncertainty associated with a given statistical method. Some common bootstrap applica-
tions are: estimating the bias or variance of a particular statistical estimator, or constructing
approximate confidence intervals for parameters of interest

• Basic setup: suppose that we have independent samples z1, . . . zn ∼ Pθ. The subscript θ
emphasizes the fact that θ is some parameter of interest, defined at the population level. E.g.,
this could be the mean of the distribution, the variance, or something more complicated. Let
θ̂ be an estimate for θ that we compute from the samples z1, . . . zn

• We may be interested knowing Var(θ̂), the variance of our statistic θ̂. If we had access to Pθ,
then we could just draw another fresh n samples, recompute the statistic, and repeat; after
doing this, say, 1000 times, we would have computed 1000 statistics, and could just take the
sample variance of these statistics

However, of course, we generally don’t have access to Pθ. The idea behind the bootstrap is to
use the observed samples z1, . . . zn to generate n “new” samples, as if they came from Pθ. In
particular, denoting the new samples by z̃1, . . . z̃n, we draw these according to

z̃j
i.i.d.∼ Unif{z1, . . . zn}, i = 1, . . . n, (1)

in other words, each z̃j is independent and drawn uniformly among z1, . . . zn. This is called
sampling with replacement, because in our new sample z̃1, . . . z̃n we could very well have re-
peated observations

In fact, we can think of z̃1, . . . z̃n as coming from a distribution—it is just an independent
sample of size n from the empirical distribution function over the original sample z1, . . . zn.
This is a discrete distribution, with probability mass 1/n at each of z1, . . . zn

Now that we have this bootstrap scheme, to get an estimate for Var(θ̂), we can just draw a
bootstrap sample, recompute our statistic, repeat many times, and finally compute the sample
variance over the statistics, as we would have done with samples from Pθ directly. More details
on this next

1.2 A running example

• It helps to look at a specific example; here is a nice one from Chapter 5 of the ISL textbook.
Suppose that we have two random variables X,Y ∈ R which represent the yields of two
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financial assets. We will invest a fraction of our money θ in X, and the remaining fraction
1− θ in Y . Our yield will hence be

θX + (1− θ)Y.

Because this is a random quantity, we may want to choose θ to minimize the variance of our
investment. One can show that the value of θ minimizing

Var
(
θX + (1− θ)Y

)
,

is indeed

θ =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
,

where σ2
X = Var(X), σ2

Y = Var(Y ), σXY = Cov(X,Y )

• Given n samples of past measurements (x1, y1), . . . (xn, yn) for the returns, we can compute
estimates σ̂2

X , σ̂2
Y , and σ̂XY , which are the sample variances and sample covariance. Our

plug-in estimate for θ is therefore

θ̂ =
σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY

• Note: even if we new a parametric form (say bivariate normal) for the joint distribution of X
and Y , performing formal calculations involving θ̂ would be difficult, because of the presence
of sample estimates (sample variances and covariance) in its numerator and denominator

1.3 Estimating standard errors

• So how could we estimate the standard error of our estimator θ̂? (This is just its standard
deviation; we often call the standard deviation of an estimator its standard error.) Use the
bootstrap! Let z1 = (x1, y1), . . . zn = (xn, yn) to make the notation consistent with that used
in the last section. Then pick a large number B, say B = 1000, and repeat for b = 1, . . . B:

– draw a bootstrap sample z̃
(b)
1 , . . . z̃

(b)
n as in (1);

– recompute the statistic θ̃(b) on z̃
(b)
1 , . . . z̃

(b)
n .

Then we to estimate the standard error SE(θ̂), we use

SE(θ̂) ≈

√√√√ 1

B

B∑
b=1

(
θ̃(b) − 1

B

B∑
r=1

θ̃(r)

)2

, (2)

which is just the sample standard deviation of the bootstrap statistics θ̃(1), . . . θ̃(B)

1.4 Estimating bias

• We can also use the bootstrap to estimate the bias of our estimator. That (2) is a reasonable
approximation is more or less very intuitive, but the bias argument is not as obvious. The idea
is to make the approximation

E(θ̂)− θ ≈ E(θ̃)− θ̂ (3)

≈ 1

B

B∑
b=1

θ̃(b) − θ̂ (4)
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• Once we believe (3), the second approximation (4) clearly follows. But why should (3) be
reasonable? It will remain a valid approximation as long as the distributions of θ̂ − θ and
θ̃ − θ̂ are close. This is weaker than saying that the distributions of θ̂ and θ̃ should be close,
or that E(θ̂) and θ should be close

More generally, you may consider (3) to be a reasonable approximation as long as θ̂ − θ is
(roughly) pivotal, meaning that its distribution does not depend on the unknown parameter θ

2 Bootstrap confidence intervals

2.1 Basic bootstrap confidence intervals

• An extremely useful application of the bootstrap is the construction of confidence intervals.
Recall that a (1 − α) confidence interval for θ, computed over z1, . . . zn, is a random interval
[L,U ] satisfying

P(L ≤ θ ≤ U) = 1− α.

We stress again the lower and upper limits L and U are random (i.e., L and U depend on
z1, . . . zn), and it is this randomness that is being considered in the probability statement
above—the underlying parameter θ itself is fixed

• The basic bootstrap confidence interval for θ computes the bootstrap statistics θ̃(1), . . . θ̃(B) as
above, and then approximates the distribution of θ̂ − θ by θ̃ − θ̂
I.e., we compute the α/2 and 1−α/2 quantiles of θ̃(1), . . . θ̃(B), call them qα/2 and q1−α/2, and
then argue

1− α = P
(
qα/2 ≤ θ̃ ≤ q1−α/2

)
= P

(
qα/2 − θ̂ ≤ θ̃ − θ̂ ≤ q1−α/2 − θ̂

)
≈ P

(
qα/2 − θ̂ ≤ θ̂ − θ ≤ q1−α/2 − θ̂

)
= P

(
qα/2 − 2θ̂ ≤ −θ ≤ q1−α/2 − 2θ̂

)
= P

(
2θ̂ − q1−α/2 ≤ −θ ≤ 2θ̂ − qα/2

)
.

In other words, we use [L,U ] = [2θ̂ − q1−α/2, 2θ̂ − qα/2] as an approximate (1− α) confidence
interval for θ

2.2 Studentized bootstrap confidence intervals

• If the distributions θ̂ − θ and θ̃ − θ̂ are not close, then the basic bootstrap confidence interval
can be inaccurate

• But even in this case, the distributions of (θ̂ − θ)/ŜE(θ̂) and (θ̃ − θ̂)/ŜE(θ̃) could be close,
where ŜE(·) denote estimated standard errors. Hence we could use what are called studentized
bootstrap confidence intervals

• In this construction, we actually need two levels of boostrapping, an outer and inner bootstrap.
We repeat, for b = 1, . . . B:

– draw a bootstrap sample z̃
(b)
1 , . . . z̃

(b)
n from z1, . . . zn;

– recompute the statistic θ̃(b) on z̃
(b)
1 , . . . z̃

(b)
n ;

– repeat, for m = 1, . . .M :

∗ draw a bootstrap sample z̃
(b,m)
1 , . . . z̃

(b,m)
n from z̃

(b)
1 , . . . z̃

(b)
n ;
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∗ recompute the statistic θ̃(b,m) on z̃
(b,m)
1 , . . . z̃

(b,m)
n ;

– compute the sample standard deviation s̃(b) of θ̃(b,1), . . . θ̃(b,M).

At the end, we compute the sample standard deviation s of θ̃(1), . . . θ̃(B). We also compute the
α/2 and 1− α/2 quantiles, call them qα/2 and q1−α/2, of

θ̃(b) − θ̂
s̃(b)

, b = 1, . . . B

• Now we make the argument

1− α = P

(
qα/2 ≤

θ̃ − θ̂
s̃
≤ q1−α/2

)

≈ P

(
qα/2 ≤

θ̂ − θ
s
≤ q1−α/2

)
= P

(
sqα/2 ≤ θ̂ − θ ≤ sq1−α/2

)
= P

(
sqα/2 − θ̂ ≤ −θ ≤ sq1−α/2 − θ̂

)
= P

(
θ̂ − sq1−α/2 ≤ θ ≤ 2θ̂ − qα/2

)
.

Therefore we use
[L,U ] =

[
θ̂ − sq1−α/2, θ̂ − sqα/2

]
as an approximate (1 − α) confidence interval for θ. The advantage of this over the basic
bootstrap confidence interval is that it can be more accurate; the disadvantage is that it is
much more computationally demanding!
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