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1 Testing and training errors

1.1 Setup and motivation

• Let’s suppose we have a function for predicting Y from X, let’s call it r̂. Further suppose that
r̂ was fit on n training samples (xi, yi), i = 1, . . . n. You can think of these as independent
samples from some common distribution

Now consider another point (X,Y ), independent of our training sample, and from the same
distribution. We are interested to know how well the function r̂, constructed on the training
set (x1, y1), . . . (xn, yn), can predict our new test point (X,Y ). To measure this, we define the
expected test error as

E[TestErr(r̂)] = E
[(
Y − r̂(X)

)2]
, (1)

where the expectation is over all that is random (training set, and test point)

• Well, why would we ever want to do this? Here are two reasons (these are not the only two,
but two major ones):

1. Performance assessment: sometimes we would just like to know how well we can predict
a future observation, in absolute terms

2. Model selection: often we will want to choose between different fitting functions; this
could mean choosing between two different model classes entirely (e.g., linear regression
versus some other fixed method) or choosing an underlying tuning parameter for a single
method (e.g., choosing k in k-nearest neighbors). How to do this? A common way is to
compare expected test errors

1.2 The bias-variance tradeoff

• The expected test error in (1), also called the prediction error, has an important property: it
decomposes into informative parts

• Before we do this, let’s think about a few points:

1. Can we ever predict Y from X with zero prediction error? Likely, no. Even if for some
magical reason our function r̂ happened to capture the ideal relation underlying X,Y ,
i.e., the true regression function r(X) = E(Y |X), we would still incure some error, due
to noise. We call this irreducible error

2. What happens if our fitted function r̂ belongs to a model class that is far from the true
regression function r? E.g., we choose to fit a linear model in a setting where the true
relationship is far from linear? We’ll often refer to this as a misspecified model. As a
result, we encounter error, what we call estimation bias
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3. What happens if our fitted (random) function r̂ is itself quite variable? In other words,
over different copies of the training set, we end up constructing substantially different
functions r̂? This is another source of error, that we’ll call estimation variance

• Moreso than just these intuitive descriptions, the expected test error mathematically decom-
poses into a sum of three corresponding parts. Begin by writing the model

Y = r(X) + ε,

where we’ll assume that ε is independent of X with mean zero and variance σ2. Recall that
(xi, yi), i = 1, . . . n are independent pairs with the same distribution as (X,Y ), and that r̂ is
fit on this training set. We’ll look at the expected test error, conditional on X = x for some
arbitrary input x,

E[TestErr(r̂(x))] = E
[(
Y − r̂(x)

)2∣∣X = x
]

= E
[(
Y − r(x)

)2∣∣X = x
]

+ E
[(
r(x)− r̂(x)

)2∣∣X = x
]

= σ2 + E
[(
r(x)− r̂(x)

)2]
.

The first term is just a constant, σ2, and is the irreducible error (sometimes referred to as the
Bayes error). The second term can be further decomposed as

E
[(
r(x)− r̂(x)

)2]
=
(
E[r̂(x)]− r(x)

)2
+ E

[(
r̂(x)− E[r̂(x)]

)2]
= Bias(r̂(x))2 + Var(r̂(x)),

the first term being the squared estimation bias or simply bias, Bias(r̂(x)) = E[r̂(x)] − r(x),
and the second term being the estimation variance or simply variance. Therefore, altogether,

E[TestErr(r̂(x))] = σ2 + Bias(r̂(x))2 + Var(r̂(x)), (2)

which is called the bias-variance decomposition or bias-variance tradeoff

• From the bias-variance tradeoff (2), we can see that even if our prediction is unbiased, i.e.,
E[r̂(x)] = r(x), we can still incur a large error if it is highly variable. Meanwhile, even when
our prediction is stable and not variable, we can incur a large error if it is badly biased

• There is a tradeoff here, but it need it is really never be one-to-one; i.e., in some cases, it can
be worth sacrificying a little bit of bias to gain large decrease in variance, and in other cases,
vice versa

• Typical trend: underfitting means high bias and low variance, overfitting means low bias but
high variance. E.g., think about k in k-nearest-neighbors regression: relatively speaking, how
do the bias and variance behave for small k, and for large k?

1.3 The optimism of training error

• What’s wrong with the expected training error,

E[TrainErr(r̂)] = E
[ 1

n

n∑
i=1

(
yi − r̂(xi)

)2]
, (3)

which measures the squared error of r̂ around the data we used to fit it? The problem is that
this will be, generally speaking, far too optimistic. Why? Because we chose r̂ so that it fit
well to the training data (xi, yi), i = 1, . . . n, of course its error is going to look too small
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• This rules out using the expected training error for our first purpose described above, per-
formance assessment. However, if the expected training error was systematically (always)
different than the expected test error by the same amount, then we could use it for our second
purpose, model selection. E.g., if it the training error curve had the right shape with k (but
just not the right height), then we could still use it to choose k in k-nearest-neighbors regres-
sion. Unforunately, examples show that this is essentially never the case. Hence the expected
training error cannot really be used at all for either purpose. We’ll see this quite blatantly in
the R working examples

2 Estimating error in practice

2.1 A single hold-out test point

• In practice, if we fit r̂ on samples (xi, yi), i = 1, . . . n, then we don’t typically have a way of
computing the expected test error in (1). We can easily estimate the expected training error
in (3), by

1

n

n∑
i=1

(
yi − r̂(xi)

)2
,

but as explained above, this is not at all a good surrogate for test error

• Looking back at (1), we can see that we need a test point; without access to any more data
samples, what can we do? One idea is to fit our prediction function on the first n− 1 training
samples (xi, yi), i = 1, . . . n − 1, call it r̂(−n), and then treat the last point (xn, yn) as a test
sample. Therefore we have expected test error estimate(

yn − r̂−(n)(xn)
)2
.

Let’s consider two questions:

1. Does this estimate have the right expectation? Not quite (why?) but it probably won’t
be far off at all

2. Is this estimate variable? Probably yes, since we’re only using a single sample point to
evaluate error

2.2 Leave-one-out cross-validation

• A natural extension of the above: hold-out each point (xi, yi) from our training set in turn,
fit r̂−(i) on all points except this one (i.e., (xj , yj), j 6= i), record the squared error on (xi, yi),
and average the results. This yields the test error estimate

CVErr(r̂) =
1

n

n∑
i=1

(
yi − r̂−(i)(xi)

)2
.

This method is called leave-one-out cross-validation (sometimes acronymized LOOCV).

• Compared to using a single hold-out test point, we’ve increased the computational burden (by
a factor of n!), but with the advantage that now the variance of our error estimate is greatly
reduced

(We haven’t really changed the expectation of our test error estimate and should still have
E[CVErr(r̂)] ≈ E[TestErr(r̂)])
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2.3 K-fold cross-validation

• There is yet another way to carve things up. We split up our training set into K divisions or
folds, for some number K. Usually this division is done randomly. Write these as F1, . . . FK
(so F1 ∪ . . .∪FK = {1, . . . n}). Now for each k = 1, . . .K, we fit our prediction function on all
points but those in the kth fold, call it r̂−(k), and evaluate error on the points in the kth fold,

CVk(r̂−(k)) =
1

nk

∑
i∈Fk

(
yi − r̂−(k)(xi)

)2
.

Here nk denotes the number of points in the kth fold, nk = |Fk|. Finally we average these
fold-based errors to yield a test error estimate

CVErr(r̂) =
1

K

K∑
k=1

CVk(r̂−(k)).

This is called K-fold cross validation, and note that leave-one-out cross-validation is a special
case of this corresponding to K = n

• Another highly common choice (other than K = n) is to choose K = 5 or K = 10. What does
this do?

1. The mean of our estimate is now a little bit farther off, i.e., E[CVErr(r̂)] is probably a
little farther from E[TestErr(r̂)] (why?), but still for large enough n this shouldn’t be a
problem

2. On the plus side, we’ve actually managed to further decrease the variance of our error
estimate. Now CVErr(r̂) is the average of quantities that are less correlated (than they
were with K = n), because the fits r̂−(k), k = 1, . . .K are not dependent on as much
overlapping data. Note that the variance of the sum of highly correlated quantities is
larger than that with midly correlated quantities

2.4 Cross-validation standard errors

• For K-fold cross-validation, it’s very helpful to assign a quantitative notion of variability to
the cross-validation error estimate. We argue that

Var(CVErr(r̂)) = Var
( 1

K

K∑
k=1

CVk(r̂−(k))
)
≈ 1

K
Var(CV1(r̂−(1))). (4)

Why is this an approximation? This would hold exactly if CV1(r̂−(1)), . . .CVK(r̂−(K)) were
i.i.d., but they’re not. This approximation is valid for small K (e.g., K = 5 or 10) but not
really for big K (e.g., K = n), because then the quantities CV1(r̂−(1)), . . .CVK(r̂−(K)) are
highly correlated

• For small K (e.g., K = 5 or 10), we can leverage (4) to get an estimate of the variance of the
cross-validation error estimate. We use

1

K
var
{

CV1(r̂−(1)), . . .CVK(r̂−(K))
}
,

(where var(·) denotes the sample variance operator) and hence

1√
K

sd
{

CV1(r̂−(1)), . . .CVK(r̂−(K))
}
,

for the standard deviation or standard error of the cross-validation error estimate (where sd
denotes the sample standard deviation)
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2.5 Model selection in practice

• To choose between models in practice, we simply compute cross-validated errors for each, and
then take the model with the minimum cross-validated error

• For tuning parameter selection (as in k in k-nearest neighbors), write r̂θ to denote that our fit-
ting mechanism depends on some parameter θ. Then for a range of parameter values θ1, . . . θm
of interest, we compute

CVErr(r̂θ1), . . .CVErr(r̂θm),

and choose the value of minimizing the cross-validation error curve (a curve over θ),

θ̂ = argmin
θ∈{θ1,...θm}

CVErr(r̂θ)

• For close calls, pay attention to standard errors! More on this later ...
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