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1 Generalized linear models

1.1 Introduction: two regressions

• So far we’ve seen two canonical settings for regression. Let X ∈ Rp be a vector of predictors.
In linear regression, we observe Y ∈ R, and assume a linear model:

E(Y |X) = βTX,

for some coefficients β ∈ Rp. In logistic regression, we observe Y ∈ {0, 1}, and we assume a
logistic model

log
( P(Y = 1|X)

1− P(Y = 1|X)

)
= βTX.

• What’s the similarity here? Note that in the logistic regression setting, P(Y = 1|X) = E(Y |X).
Therefore, in both settings, we are assuming that a transformation of the conditional expec-
tation E(Y |X) is a linear function of X, i.e.,

g
(
E(Y |X)

)
= βTX,

for some function g. In linear regression, this transformation was the identity transformation
g(u) = u; in logistic regression, it was the logit transformation g(u) = log(u/(1− u))

• Different transformations might be appropriate for different types of data. E.g., the identity
transformation g(u) = u is not really appropriate for logistic regression (why?), and the logit
transformation g(u) = log(u/(1− u)) not appropriate for linear regression (why?), but each is
appropriate in their own intended domain

• For a third data type, it is entirely possible that transformation neither is really appropriate.
What to do then? We think of another transformation g that is in fact appropriate, and this
is the basic idea behind a generalized linear model

1.2 Generalized linear models

• Given predictors X ∈ Rp and an outcome Y , a generalized linear model is defined by three
components: a random component, that specifies a distribution for Y |X; a systematic compo-
nent, that relates a parameter η to the predictors X; and a link function, that connects the
random and systematic components

• The random component specifies a distribution for the outcome variable (conditional on X).
In the case of linear regression, we assume that Y |X ∼ N(µ, σ2), for some mean µ and variance
σ2. In the case of logistic regression, we assume that Y |X ∼ Bern(p) for some probability p.
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In a generalized model, we are allowed to assume that Y |X has a probability density function
or probability mass function of the form

f(y; θ, φ) = exp
(yθ − b(θ)

a(φ)
+ c(y, φ)

)
.

Here θ, φ are parameters, and a, b, c are functions. Any density of the above form is called an
exponential family density. The parameter θ is called the natural parameter, and the parameter
φ the dispersion parameter; it helps to think of the normal case, where θ = µ, and φ = σ

• We will denote the expectation of this distribution as µ, i.e., E(Y |X) = µ. It will be our goal
to estimate µ. This typically doesn’t involve the dispersion parameter φ, so for simplicity, we’ll
assume this is known

• The systematic component relates a parameter η to the predictors X. In a generalized linear
model, this is always done via

η = βTX = β1X1 + . . .+ βpXp.

Note that throughout we are conditioning onX, hence we think of it as systematic (nonrandom)

• Finally, the link component connects the random and systematic components, via a link func-
tion g. In particular, this link function provides a connection between µ, the mean of Y |X,
and and η, as in

g(u) = η.

Again, it helps to think of the normal case, where g(µ) = µ, so that µ = βTX

2 Examples

• So many parameters: θ, φ, µ, η...! Let’s do a little bit of sorting out.

– First of all, remember that µ is the mean of Y |X, what we want to ultimately estimate

– Now, θ is just a parameter we use to govern the shape of the density of Y |X, and so
µ—the mean of this distribution—will obviously depend on θ. It can be the case that
µ = θ (e.g., normal), but this doesn’t need to be true (e.g., Bernoulli, Poisson)

– Recall that φ is a dispersion parameter of the density of Y |X, but we’ll think of this as
known, because to estimate µ we won’t need to know its value

– The parameter η may seem like a weird one. At this point, for generalized linear models,
you can just think of it as short form for a linear combination of the predictors, η = βTX.
From a broader perspective, we’re aiming to model a transformation of the mean µ by
some function of X, written g(µ) = η(X). For generalized linear models, we are always
modeling a transformation of the mean by a linear function of X, but this will change for
generalized additive models

Now it helps to go through several examples

2.1 Bernoulli

• Suppose that Y ∈ {0, 1}, and we model the distribution of Y |X as Bernoulli with success
probability p, i.e., 1 with probability p and 0 with probability 1 − p. Then the probability
mass function (not a density, since Y is discrete) is

f(y) = py(1− p)1−y
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• We can rewrite to fit the exponential family form as

f(y) = exp
(
y log p+ (1− y) log(1− p)

)
= exp

(
y · log

(
p/(1− p)

)
+ log(1− p)

)
• Here we would identify θ = log(p/(1− p)) as the natural parameter. Note that the mean here

is µ = p, and using the inverse of the above relationship, we can directly write the mean p as
a function of θ, as in p = eθ/(1 + eθ). Hence b(θ) = log(1− p) = − log(1 + eθ)

• There is no dispersion parameter, so we can set a(φ) = 1. Also, c(y, φ) = 0

2.2 Poisson

• Now suppose that Y ∈ {0, 1, 2, 3, . . .}, i.e., Y is a nonnegative count, and we model its distri-
bution (conditional on X) as Poisson with mean µ. Its probability mass function is

f(y) =
1

y!
e−µµy

• Rewriting this,

f(y) = exp
(
y logµ− µ− log(y!)

)
• Hence θ = logµ is the natural parameter. Reciprocally, we can write the mean in terms of the

natural parameter as µ = eθ. Hence b(θ) = µ = eθ

• Again there is no dispersion parameter, so we can set a(φ) = 1. Finally, c(y, φ) = − log(y!)

2.3 Gaussian

• A familiar setting is probably when Y ∈ R, and we model Y |X as N(µ, σ2). The density is

f(y) =
1√
2πσ

exp
(
− (y − µ)2

2σ2

)
• This is pretty much already in exponential family form, but we can simply manipulate it a bit

more to get

f(y) = exp
(yµ− µ2/2

σ2
− y2/(2σ2)− log σ − log

√
2π
)

• Now the natural parameter is simply θ = µ, and b(θ) = θ2/2

• Here we have a dispersion parameter, φ = σ, and a(φ) = σ2. Also c(y, φ) = y2/(2σ2)− log σ−
log
√

2π

2.4 Link functions

• What about the link function g? Well, we’ve already seen that for the normal case, the
“right” choice of link function is the identity transform g(µ) = µ, so that we model µ = βTX;
and for the Bernoulli case, the “right” choice of link function is the logit transform g(µ) =
log(µ/(1 − µ)), so that we model log(µ/(1 − µ)) = βTX. We’ve already explained that each
of these transformations is appropriate in their own context (recall that µ = p, the success
probability, in the Bernoulli case)
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• But what about the Poisson case? And in general, given an exponential family, what is the
“right” transform? Fortunately, there is a default choice of link function called the canonical
link. We can define this implicitly by the link function that sets

θ = η.

In other words, the link function is defined via g(µ) = θ, by writing the natural parameter θ
in terms of µ

• In many cases, we can read off the canonical link just from the term that multiplies y in the
exponential family density or mass function. E.g., for normal, this is g(µ) = µ, for Bernoulli,
this is g(µ) = log(µ/(1− µ)), and for Poisson, this is g(µ) = log µ

• The canonical link is general and tends to work well. But it is important to note that the
canonical link is not the only “right” choice of link function. E.g., in the Bernoulli setting,
another common choice (aside from the logit link g(µ) = log(µ/(1 − µ))) is the probit link,
g(µ) = Φ−1(µ), where Φ is the standard normal CDF

3 Estimation from samples

• Suppose that we are given independent samples (xi, yi), i = 1, . . . n, with each yi|xi having an
exponential family density

f(yi; θi, φ) = exp
(yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
, i = 1, . . . n.

I.e., we fix an underlying exponential family distribution and common dispersion parameter φ,
but allow each sample yi|xi its own natural parameter θi. The analogy in the Gaussian case
is yi|xi ∼ N(µi, σ

2), i = 1, . . . n

• Our goal is to estimate the means µi = E(yi|xi), for i = 1, . . . n. Recall that we have a link
function g(µi) = ηi, which connects the mean µi to the parameter ηi = xTi β. Hence we can
first estimate the coefficients β, as in β̂, and then use these estimates to argue that

g(µ̂i) = xTi β̂, i = 1, . . . n

i.e.,
µ̂i = g−1(xTi β̂), i = 1, . . . n

• So how do we compute β̂? We use maximum likelihood. The likelihood of the samples (xi, yi),
i = 1, . . . n, conditional on xi, i = 1, . . . n, is

L(θ) =

n∏
i=1

f(yi; θi, φ),

written as a function of θ = (θ1, . . . θn) to denote the dependence the natural parameter.

• I.e., the log likelihood is

`(θ) =

n∑
i=1

yiθi − b(θi)
a(φ)

+

n∑
i=1

c(yi, φ)
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• We want to maximize this log likelihood over all choices of coefficients β ∈ Rp; this is truly a
function of β, because each natural parameter θi can be written in terms of the mean µi of
the exponential family distribution, and µi = xTi β, i = 1, . . . n. Therefore we can write

`(β) =

n∑
i=1

yiθi − b(θi)

where we have discarded terms that don’t depend on θi, i = 1, . . . n

• To be more concrete, suppose that we are considering the canonical link function g; recall that
this is the link function that sets θi = ηi = xTi β, i = 1, . . . n. Then the log likelihood, to
maximize over β, is

`(β) =

n∑
i=1

yix
T
i β − b(xTi β) (1)

• Some quick checks: in the Bernoulli model, this is

n∑
i=1

yix
T
i β − log

(
1 + exp(xTi β)

)
,

which is precisely what we saw in logistic regression. In the Gaussian model, this is

n∑
i=1

yix
T
i β − (xTi β)2/2,

and maximizing the above is just the same as minimizing the least squares criterion

n∑
i=1

(yi − xTi β)2,

as in linear regression. Finally, in the Poisson model, we get

n∑
i=1

yix
T
i β − exp(xTi β),

which is new (for us, so far!), and called Poisson regression

• How do we maximize the likelihood (1) to form our estimate β̂? In general, there is no closed-
form for its maximizer (as in there is in the Gaussian least squares case). Therefore we must
run an optimization algorithm to compute its maximizer. Fortunately, though, it turns out we
can maximize `(β) by repeatedly performing weighted least squares regressions! This is the
same as what we described in logistic regression, and is an instance of Newton’s method for
maximizing (1) that we call iteratively reweighted least squares, or IRLS

• Aside from being computationally convenient (and efficient), the IRLS algorithm is very helpful

from the perspective of statistical inference: we simply treat the coefficients β̂ as a result of a
single weighted least squares regression—the last one in the IRLS sequence—and now apply
all of our inferential tools from linear regression (e.g., form confidence intervals) accordingly.
This is the standard in software, and we will not go into detail, but it helps to know where
such constructs come from
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4 Generalized additive models

• Recall that we saw we could augmented the standard linear model

E(yi|xi) = β0 + β1xi1 + β2xi2 + . . .+ βpxip, i = 1, . . . n,

with the additive model

E(yi|xi) = β0 + r1(xi1) + r2(xi2) + . . .+ rp(xip),

where each rj is an arbitrary (univariate) regression function, j = 1, . . . p

• The same extension can be applied to the generalized linear model, yielding what we call a
generalized additive model. The only change is in the parameter η, which we now define as

ηi = β0 + r1(xi1) + r2(xi2) + . . .+ rp(xip), i = 1, . . . n

• That is, the link function g now connects the random component, the mean of the exponential
family distribution µi = E(yi|xi), to the systematic component ηi, via

g(µi) = β0 + r1(xi1) + r2(xi2) + . . .+ rp(xip), i = 1, . . . n

• In the Gaussian case, the above reduces to the additive model that we’ve already studied. In
the Bernoulli case, with canonical link, this model becomes

log
pi

1− pi
= β0 + r1(xi1) + r2(xi2) + . . .+ rp(xip), i = 1, . . . n,

were pi = P(yi = 1|xi), i = 1, . . . n, which gives us additive logistic regression. In the Poisson
case, with canonical link, this becomes

logµi = β0 + r1(xi1) + r2(xi2) + . . .+ rp(xip), i = 1, . . . n,

which is called additive Poisson regression

• Generalized additive models are a marriage of two worlds: generalized linear models and addi-
tive models, and is altogether a very flexible, powerful platform for modeling. The generalized
linear model element allows us to account for different types of outcome data yi, i = 1, . . . n,
and the additive model element allows us to consider a transformation of the mean E(yi|xi) as
a nonlinear (but additive) function of xi ∈ Rp, i = 1, . . . n
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